Recursive repeated games with absorbing states

J Flesch*, F Thuijsman, OJ Vrieze

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We show the existence of stationary limiting average epsilon-equilibria (epsilon > 0) for two-person recursive repeated games with absorbing states. These are stochastic games where all states but one are absorbing, and in the nonabsorbing state ail payoffs are equal to zero. A state is called absorbing if the probability of a transition to any other state is zero for all available pairs of actions. For the purpose of our proof, we introduce properness for stationary strategy pairs. Our result is sharp since it extends neither to the case with more nonabsorbing states, nor to the n-person case with n > 2. Moreover, it is well known that the result cannot be strengthened to the existence of 0-equilibria and that repeated games with absorbing states generally do not admit stationary epsilon-equilibria.
Original languageEnglish
Pages (from-to)1016-1022
JournalMathematics of Operations Research
Volume21
Issue number4
DOIs
Publication statusPublished - Nov 1996

Keywords

  • stochastic games
  • limiting average rewards
  • Nash-equilibria
  • stationary strategies

Fingerprint

Dive into the research topics of 'Recursive repeated games with absorbing states'. Together they form a unique fingerprint.

Cite this