Proteomics Investigations of Drug-Induced Hepatotoxicity in HepG2 Cells.

A. Anke Summeren van*, J. Renes, F.G. Bouwman, J.P. Noben, J.H. van Delft, J.C. Kleinjans, E.C. Mariman

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Downloads (Pure)


Unexpected hepatotoxicity is one of the major reasons of drugs failing in clinical trials. This emphasizes the need for new screening methods that address toxicological hazards early in the drug discovery process. Here, proteomics techniques were used to gain further insight into the mechanistic processes of the hepatotoxic compounds. Drug-induced hepatotoxicity is mainly divided in hepatic steatosis, cholestasis or necrosis. For each class a compound was selected, respectively amiodarone, Cyclosporine A and acetaminophen. The changes in protein expressions in HepG2 after exposure to these test compounds, were studied using quantitative 2-D Differential Gel Electrophoresis. Identification of differentially expressed proteins was performed by Maldi-TOF/TOF MS and LC-MS/MS. In this study 254 differentially expressed protein spots were detected in a 2-D proteome map from which 86 were identified, showing that the proteome of HepG2 cells is responsive to hepatotoxic compounds. Cyclosporin A treatment was responsible for most differentially expressed proteins and could be discriminated in the hierarchical clustering analysis. The identified differential proteins show that Cyclosporine A may induce ER stress and disturbs the ER-Golgi transport, with an altered vesicle mediated transport and protein secretion as result. Moreover, the differential protein pattern seen after cyclosporin A treatment can be related to cholestatic mechanisms. Therefore, our findings indicate that the HepG2 in vitro cell system has distinctive characteristics enabling the assessment of cholestatic properties of novel compounds at an early stage of drug discovery.
Original languageEnglish
Pages (from-to)109-122
JournalToxicological Sciences
Issue number1
Publication statusPublished - 1 Jan 2011

Cite this