Proteomics analysis of zebrafish larvae exposed to 3,4-dichloroaniline using the fish embryo acute toxicity test

Leonardo R. Vieira, Denise C. Hissa, Terezinha Maria de Souza, Chayenne A. Sa, Joseph A. M. Evaristo, Fabio C. S. Nogueira, Ana F. U. Carvalho, Davi F. Farias*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Web of Science)


The zebrafish (Danio rerio) is a small teleost fish that is becoming increasingly popular in laboratories worldwide and several attributes have also placed the zebrafish under the spotlight of (eco)toxicological studies. Since the 1990s, international organizations such as ISO and OECD have published guidelines for the use of zebrafish in ecotoxicological assessment of environmental toxicants such as the Fish Embryo Acute Toxicity (FET) test, OECD n degrees 236 guideline. This protocol uses 3,4-dichloroaniline (DCA), an aniline pesticide whose toxicity to fish species at early life stages is well known, as a positive control. Despite its use, little is known about its molecular mechanisms, especially in the context of the FET test. Therefore, this study aimed to investigate such changes in zebrafish larvae exposed to DCA (4 mg/L) for 96 hours using gel-free proteomics. Twenty-four proteins detected in both groups were identified as significantly affected by DCA exposure, and, when considering group-specific entities, 48 proteins were exclusive to DCA (group-specific proteins) while 248 were only detected in the control group. Proteins modulated by DCA treatment were found to be involved in metabolic processes, especially lipids and hormone metabolism (eg, Apoa1 and Apoa1b and vitelogenins), as well as proteins important for developmental processes and organogenesis (eg, Myhc4, Acta2, Sncb, and Marcksb). The results presented here may therefore provide a better understanding of the relationships between molecular changes and phenotype in zebrafish larvae treated with DCA, the reference compound of the FET test.

Original languageEnglish
Pages (from-to)849-860
Number of pages12
JournalEnvironmental Toxicology
Issue number8
Publication statusPublished - Aug 2020


  • chemical contaminants
  • endocrine disruptors
  • OECD FET test guideline
  • proteomics
  • reference compound

Cite this