Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer

Marta Bogowicz*, Arthur Jochems, Timo M. Deist, Stephanie Tanadini-Lang, Shao Hui Huang, Biu Chan, John N. Waldron, Scott Bratman, Brian O'Sullivan, Oliver Riesterer, Gabriela Studer, Jan Unkelbach, Samir Barakat, Ruud H. Brakenhoff, Irene Nauta, Silvia E. Gazzani, Giuseppina Calareso, Kathrin Scheckenbach, Frank Hoebers, Frederik W. R. WesselingSimon Keek, Sebastian Sanduleanu, Ralph T. H. Leijenaar, Marije R. Vergeer, C. Rene Leemans, Chris H. J. Terhaard, Michiel W. M. van den Brekel, Olga Hamming-Vrieze, Martijn A. van der Heijden, Hesham M. Elhalawani, Clifton D. Fuller, Matthias Guckenberger, Philippe Lambin

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Original languageEnglish
Article number4542
Number of pages10
JournalScientific Reports
Volume10
Issue number1
DOIs
Publication statusPublished - 11 Mar 2020

Keywords

  • CELL LUNG-CANCER
  • HEALTH-CARE
  • EARLY DEATH
  • MODEL
  • RADIOCHEMOTHERAPY
  • VARIABILITY
  • STABILITY
  • HYPOXIA
  • PET
  • CT

Cite this