PRENATAL EXPOSURE TO HYPEROXIA MODIFIES THE THROMBOXANE PRO STANOID RECEPTOR-MEDIATED RESPONSE TO H2O2 IN THE DUCTUS ARTERIOSUS OF THE CHICKEN EMBRYO

S. Van der Sterren, L. Kessels, F. Perez-Vizcaino, A. L. Cogolludo, E. Villamor*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

O-2 tension plays a critical role in the control of prenatal patency and postnatal closure of the ductus arteriosus (DA). We hypothesized that exposure of chicken embryos to hyperoxia alters the morphology and function of DA. Hyperoxia was induced by incubating fertilized eggs at 60% O-2 from day 15 to 19 of the 21-d incubation period. DA reactivity (assessed by wire myography), morphometry and mRNA expression of antioxidant enzymes were studied on day 19. Hyperoxic incubation neither affected embryonic growth nor induced signs of DA constriction or changed the mRNA expression of superoxide dismutase and catalase. The contractions induced by O-2(21%), KCl, 4-aminopyridine, phenylephrine, and endothelin-1 and the relaxations induced by acetylcholine (ACh), sodium nitroprusside, isoproterenol, and hydroxyfasudil were similar in DA from embryos incubated under normoxic or hyperoxic conditions. In contrast, hyperoxic incubation impaired the thromboxane prostanoid (TP) receptor-mediated contractions evoked by U46619, 15-E-2t,-Isoprostane and high concentrations (>= 3 mu M) of ACh. Exogenous hydrogen peroxide (H2O2) evoked endotheliumdependent contraction in the normoxic DA and endothelium-dependent relaxation in the hyperoxic group. The presence of the TP receptor antagonist SQ 29548 unmasked a relaxant response to H2O2 in the normoxic DA and the cyclooxygenase (COX) inhibitor indomethacin blocked H2O2-induced contraction (in the normoxic group) and relaxation (in the hyperoxic group). Altogether our functional data suggest that, in the chicken DA, exogenous H2O2 induces the release of endothelium-derived COX metabolite(s) with contractile and relaxant properties. Under normal conditions H2O2-induced contraction prevails and relaxation is unmasked after pharmacological or functional (i.e. hyperoxia) TP receptor impairment.
Original languageEnglish
Pages (from-to)283-293
JournalJournal of Physiology and Pharmacology
Volume65
Issue number2
Publication statusPublished - Apr 2014

Keywords

  • hyperoxia
  • ductus arteriosus
  • prostanoids
  • thromboxane prostanoid receptor
  • hydrogen peroxide
  • normoxia

Cite this