Prediction of incomplete primary debulking surgery in patients with advanced ovarian cancer: An external validation study of three models using computed tomography

Iris J. G. Rutten*, Rafli van de Laar, Roy F. P. M. Kruitwagen, Frans C. H. Bakers, Marieke J. M. Ploegmakers, Teun W. F. Pappot, Regina G. H. Beets-Tan, Leon F. A. G. Massuger, Petra L. M. Zusterzeel, Toon Van Gorp

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Objective. To test the ability of three prospectively developed computed tomography (CT) models to predict incomplete primary debulking surgery in patients with advanced (International Federation of Gynecology and Obstetrics stages III-IV) ovarian cancer. Methods. Three prediction models to predict incomplete surgery (any tumor residual > 1 cm in diameter) previously published by Ferrandina (models A and B) and by Gerestein were applied to a validation cohort consisting of 151 patients with advanced epithelial ovarian cancer. All patients were treated with primary debulking surgery in the Eastern part of the Netherlands between 2000 and 2009 and data were retrospectively collected. Three individual readers evaluated the radiographic parameters and gave a subjective assessment. Using the predicted probabilities from the models, the area under the curve (AUC) was calculated which represents the discriminative ability of the model. Results. The AUC of the Ferrandina models was 0.56, 0.59 and 0.59 in model A, and 0.55, 0.60 and 0.59 in model B for readers 1, 2 and 3, respectively. The AUC of Gerestein's model was 0.69, 0.61 and 0.69 for readers 1, 2 and 3, respectively. AUC values of 0.69 and 0.63 for reader 1 and 3 were found for subjective assessment. Conclusions. Models to predict incomplete surgery in advanced ovarian cancer have limited predictive ability and their reproducibility is questionable. Subjective assessment seems as successful as applying predictive models. Present prediction models are not reliable enough to be used in clinical decision-making and should be interpreted with caution.
Original languageEnglish
Pages (from-to)22-28
JournalGynecologic Oncology
Volume140
Issue number1
DOIs
Publication statusPublished - Jan 2016

Keywords

  • External validation
  • Prediction models
  • Epithelial ovarian cancer
  • Complete primary cytoreductive surgery
  • Computed tomography

Fingerprint

Dive into the research topics of 'Prediction of incomplete primary debulking surgery in patients with advanced ovarian cancer: An external validation study of three models using computed tomography'. Together they form a unique fingerprint.

Cite this