Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal

Laure Wynants*, Ben Van Calster, Gary S Collins, Richard D Riley, Georg Heinze, Ewoud Schuit, Marc M J Bonten, Darren L Dahly, Johanna A A Damen, Thomas P A Debray, Valentijn M T de Jong, Maarten De Vos, Paul Dhiman, Maria C Haller, Michael O Harhay, Liesbet Henckaerts, Pauline Heus, Michael Kammer, Nina Kreuzberger, Anna LohmannKim Luijken, Jie Ma, Glen P Martin, David J McLernon, Constanza L Andaur, Johannes B Reitsma, Jamie C Sergeant, Chunhu Shi, Nicole Skoetz, Luc J M Smits, Kym I E Snell, Matthew Sperrin, René Spijker, Ewout W Steyerberg, Toshihiko Takada, Ioanna Tzoulaki, Sander M J van Kuijk, Bas van Bussel, Florien S van Royen, Jan Y Verbakel, Christine Wallisch, Jack Wilkinson, Robert Wolff, Lotty Hooft, Karel G M Moons, Maarten van Smeden

*Corresponding author for this work

Research output: Contribution to journal(Systematic) Review article peer-review



To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitted to hospital for covid-19 pneumonia.


Rapid systematic review and critical appraisal.


PubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 24 March 2020.


Studies that developed or validated a multivariable covid-19 related prediction model.


At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool).


2696 titles were screened, and 27 studies describing 31 prediction models were included. Three models were identified for predicting hospital admission from pneumonia and other events (as proxy outcomes for covid-19 pneumonia) in the general population; 18 diagnostic models for detecting covid-19 infection (13 were machine learning based on computed tomography scans); and 10 prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay. Only one study used patient data from outside of China. The most reported predictors of presence of covid-19 in patients with suspected disease included age, body temperature, and signs and symptoms. The most reported predictors of severe prognosis in patients with covid-19 included age, sex, features derived from computed tomography scans, C reactive protein, lactic dehydrogenase, and lymphocyte count. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population (reported for all three models), from 0.81 to more than 0.99 in diagnostic models (reported for 13 of the 18 models), and from 0.85 to 0.98 in prognostic models (reported for six of the 10 models). All studies were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, and high risk of model overfitting. Reporting quality varied substantially between studies. Most reports did not include a description of the study population or intended use of the models, and calibration of predictions was rarely assessed.


Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. Immediate sharing of well documented individual participant data from covid-19 studies is needed for collaborative efforts to develop more rigorous prediction models and validate existing ones. The predictors identified in included studies could be considered as candidate predictors for new models. Methodological guidance should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, studies should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline.

Original languageEnglish
Article numberm1328
Number of pages11
Publication statusPublished - 7 Apr 2020


  • COVID-19
  • Coronavirus
  • Coronavirus Infections/diagnosis
  • Disease Progression
  • Hospitalization/statistics & numerical data
  • Humans
  • Models, Theoretical
  • Multivariate Analysis
  • Pandemics
  • Pneumonia, Viral/diagnosis
  • Prognosis


Dive into the research topics of 'Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal'. Together they form a unique fingerprint.
  • Update to living systematic review (vol 369, m1328, 2020)

    Wynants, L., Van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Albu, E., Arshi, B., Bellou, V., Bonten, M. M. J., Dahly, D. L., Damen, J. A., Debray, T. P. A., de Jong, V. M. T., De Vos, M., Dhiman, P., Ensor, J., Gao, S., Haller, M. C., Harhay, M. O., & 29 othersHenckaerts, L., Heus, P., Hoogland, J., Hudda, M., Jenniskens, K., Kammer, M., Kreuzberger, N., Lohmann, A., Levis, B., Luijken, K., Martin, G. P., McLernon, D. J., Navarro, C. L. A., Reitsma, J. B., Sergeant, J. C., Shi, C. H., Skoetz, N., Smits, L. J. M., Snell, K. I. E., Sperrin, M., Spijker, R., Steyerberg, E. W., Takada, T., Tzoulaki, I., van Kuijk, S. M. J., van Bussel, B. C. T., van der Horst, I. C. C., Reeve, K. & van Royen, F. S., 3 Jun 2020, In: BMJ. 369, 1 p., m2204.

    Research output: Contribution to journalErratum / corrigendum / retractionsAcademic

    Open Access

Cite this