Predicting the outcome of ankylosing spondylitis therapy

Nathan Vastesaeger*, Desiree van der Heijde, Robert D. Inman, Yanxin Wang, Atul A. Deodhar, Benjamin Hsu, Mahboob U. Rahman, Ben Dijkmans, Piet Geusens, Bert Vander Cruyssen, Eduardo Collantes, Joachim Sieper, Juergen Braun

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

136 Citations (Web of Science)

Abstract

To create a model that provides a potential basis for candidate selection for anti-tumour necrosis factor (TNF) treatment by predicting future outcomes relative to the current disease profile of individual patients with ankylosing spondylitis (AS).ASSERT and GO-RAISE trial data (n=635) were analysed to identify baseline predictors for various disease-state and disease-activity outcome instruments in AS. Univariate, multivariate, receiver operator characteristic and correlation analyses were performed to select final predictors. Their associations with outcomes were explored. Matrix and algorithm-based prediction models were created using logistic and linear regression, and their accuracies were compared. Numbers needed to treat were calculated to compare the effect size of anti-TNF therapy between the AS matrix subpopulations. Data from registry populations were applied to study how a daily practice AS population is distributed over the prediction model.Age, Bath ankylosing spondylitis functional index (BASFI) score, enthesitis, therapy, C-reactive protein (CRP) and HLA-B27 genotype were identified as predictors. Their associations with each outcome instrument varied. However, the combination of these factors enabled adequate prediction of each outcome studied. The matrix model predicted outcomes as well as algorithm-based models and enabled direct comparison of the effect size of anti-TNF treatment outcome in various subpopulations. The trial populations reflected the daily practice AS population.Age, BASFI, enthesitis, therapy, CRP and HLA-B27 were associated with outcomes in AS. Their combined use enables adequate prediction of outcome resulting from anti-TNF and conventional therapy in various AS subpopulations. This may help guide clinicians in making treatment decisions in daily practice.
Original languageEnglish
Pages (from-to)973-981
JournalAnnals of the Rheumatic Diseases
Volume70
Issue number6
DOIs
Publication statusPublished - Jun 2011

Cite this