TY - CONF
T1 - Predicting Sports Scoring Dynamics with Restoration and Anti-Persistence
AU - Peel, Leto
AU - Clauset, Aaron
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2015
Y1 - 2015
N2 - Professional team sports provide an excellent domain for studying the dynamics of social competitions. These games are constructed with simple, well-defined rules and pay-offs that admit a high-dimensional set of possible actions and nontrivial scoring dynamics. The resulting gameplay and efforts to predict its evolution are the object of great interest to both sports professionals and enthusiasts. In this paper, we consider two online prediction problems for team sports: given a partially observed game Who will score next? and ultimately Who will win? We present novel interpretable generative models of within-game scoring that allow for dependence on lead size (restoration) and on the last team to score (anti-persistence). We then apply these models to comprehensive within-game scoring data for four sports leagues over a ten-year period. By assessing these models' relative goodness-of-fit we shed new light on the underlying mechanisms driving the observed scoring dynamics of each sport. Furthermore, in both predictive tasks, the performance of our models consistently outperforms baselines models, and our models make quantitative assessments of the latent team skill, over time.
AB - Professional team sports provide an excellent domain for studying the dynamics of social competitions. These games are constructed with simple, well-defined rules and pay-offs that admit a high-dimensional set of possible actions and nontrivial scoring dynamics. The resulting gameplay and efforts to predict its evolution are the object of great interest to both sports professionals and enthusiasts. In this paper, we consider two online prediction problems for team sports: given a partially observed game Who will score next? and ultimately Who will win? We present novel interpretable generative models of within-game scoring that allow for dependence on lead size (restoration) and on the last team to score (anti-persistence). We then apply these models to comprehensive within-game scoring data for four sports leagues over a ten-year period. By assessing these models' relative goodness-of-fit we shed new light on the underlying mechanisms driving the observed scoring dynamics of each sport. Furthermore, in both predictive tasks, the performance of our models consistently outperforms baselines models, and our models make quantitative assessments of the latent team skill, over time.
U2 - 10.1109/ICDM.2015.26
DO - 10.1109/ICDM.2015.26
M3 - Paper
SP - 339
EP - 348
ER -