Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP

J. Hallmann, S. Kolossa, K. Gedrich, C. Celis-Morales, H. Forster, C.B. O'Donovan, C. Woolhead, A.L. Macready, R. Fallaize, C.F. Marsaux, C.P. Lambrinou, C. Mavrogianni, G. Moschonis, S. Navas-Carretero, R. San-Cristobal, M. Godlewska, A. Surwillo, J.C. Mathers, E.R. Gibney, L. BrennanM.C. Walsh, J.A. Lovegrove, W.H.M. Saris, Y. Manios, J.A. Martinez, I. Traczyk, M.J. Gibney, H. Daniel

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modeling to predict levels of PUFA in whole blood, based on multiple hypothesis testing and bootstrapped LASSO selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Among other food items, fish, pizza, chicken, and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26-43% of the variability in PUFA concentrations in the training set and 22-33% in the test set. CONCLUSION: Selecting food items using multiple hypothesis testing is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.
Original languageEnglish
Pages (from-to)2565-2573
Number of pages9
JournalMolecular Nutrition & Food Research
Volume59
Issue number12
DOIs
Publication statusPublished - Dec 2015

Keywords

  • Blood marker prediction
  • FADS1
  • Fatty acids
  • n-3 FA
  • n-6 FA
  • FADS1-FADS2 GENE-CLUSTER
  • ERYTHROCYTE-MEMBRANES
  • RED WINE
  • QUESTIONNAIRE
  • VALIDATION
  • NUTRITION
  • VARIANTS
  • HUMANS
  • HEALTH
  • MUSCLE

Cite this

Hallmann, J., Kolossa, S., Gedrich, K., Celis-Morales, C., Forster, H., O'Donovan, C. B., Woolhead, C., Macready, A. L., Fallaize, R., Marsaux, C. F., Lambrinou, C. P., Mavrogianni, C., Moschonis, G., Navas-Carretero, S., San-Cristobal, R., Godlewska, M., Surwillo, A., Mathers, J. C., Gibney, E. R., ... Daniel, H. (2015). Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP. Molecular Nutrition & Food Research, 59(12), 2565-2573. https://doi.org/10.1002/mnfr.201500414