TY - JOUR
T1 - Pre-exposure to Low Doses: Modulation of X-Ray-Induced DNA Damage and Repair?
AU - Cramers, P.
AU - Atanasova, P.
AU - Vrolijk, H.
AU - Darroudi, F.
AU - van Zeeland, A.A.
AU - Huiskamp, R.
AU - Mullenders, L.H.
AU - Kleinjans, J.C.
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Cramers, P., Atanasova, P., Vrolijk, H., Darroudi, F., van Zeeland, A. A., Huiskamp, R., Mullenders, L. H. F. and Kleinjans, J. C. S. Pre-exposure to Low Doses: Modulation of X-Ray-Induced DNA Damage and Repair? Radiat. Res. 164, 383-390 (2005). The adaptive response to ionizing radiation may be mediated by the induction of antioxidant defense mechanisms, accelerated repair or altered cell cycle progression after the conditioning dose. To gain new insight into the mechanism of the adaptive response, nondividing lymphocytes and fibroblasts were used to eliminate possible contributions of cell cycle effects. The effect of conditioning doses of 0.05 or 0.1 Gy followed by challenging doses up to 8 Gy (with a 4-h interval between exposures) on induction and repair of DNA damage was determined by single-cell gel electrophoresis (comet assay), premature chromosome condensation, and immunofluorescence labeling for gamma-H2AX. The conditioning dose reduced the induction of DNA strand breaks, but the kinetics of strand break rejoining was not influenced by the conditioning dose in nondividing cells of either cell type. We conclude that adaptation in nondividing cells is not mediated by enhanced strand break rejoining and that protection against the induction of DNA damage is rather small. Therefore, the adaptive response is most likely a reflection of perturbation of cell cycle progression.
AB - Cramers, P., Atanasova, P., Vrolijk, H., Darroudi, F., van Zeeland, A. A., Huiskamp, R., Mullenders, L. H. F. and Kleinjans, J. C. S. Pre-exposure to Low Doses: Modulation of X-Ray-Induced DNA Damage and Repair? Radiat. Res. 164, 383-390 (2005). The adaptive response to ionizing radiation may be mediated by the induction of antioxidant defense mechanisms, accelerated repair or altered cell cycle progression after the conditioning dose. To gain new insight into the mechanism of the adaptive response, nondividing lymphocytes and fibroblasts were used to eliminate possible contributions of cell cycle effects. The effect of conditioning doses of 0.05 or 0.1 Gy followed by challenging doses up to 8 Gy (with a 4-h interval between exposures) on induction and repair of DNA damage was determined by single-cell gel electrophoresis (comet assay), premature chromosome condensation, and immunofluorescence labeling for gamma-H2AX. The conditioning dose reduced the induction of DNA strand breaks, but the kinetics of strand break rejoining was not influenced by the conditioning dose in nondividing cells of either cell type. We conclude that adaptation in nondividing cells is not mediated by enhanced strand break rejoining and that protection against the induction of DNA damage is rather small. Therefore, the adaptive response is most likely a reflection of perturbation of cell cycle progression.
U2 - 10.1667/RR3430.1
DO - 10.1667/RR3430.1
M3 - Article
SN - 0033-7587
VL - 164
SP - 383
EP - 390
JO - Radiation Research
JF - Radiation Research
IS - 4
ER -