Population Genomics of Chlamydia trachomatis: Insights on Drift, Selection, Recombination, and Population Structure

Sandeep J. Joseph, Xavier Didelot, James Rothschild, Henry J. C. de Vries, Servaas A. Morre, Timothy D. Read, Deborah Dean*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The large number of sexually transmitted diseases and ocular trachoma cases that are caused globally each year by Chlamydia trachomatis has made this organism a World Health Organization priority for vaccine development. However, there is no gene transfer system for Chlamydia to help identify potential vaccine targets. To accelerate discoveries toward this goal, here we analyzed the broadest diversity of C. trachomatis genomes to date, including 25 geographically dispersed clinical and seven reference strains representing 14 of the 19 known serotypes. Strikingly, all 32 genomes were found to have evidence of DNA acquisition by homologous recombination in their history. Four distinct clades were identified, which correspond to all C. trachomatis disease phenotypes: lymphogranuloma venereum (LGV; Clade 1); noninvasive urogenital infections (Clade 2); ocular trachoma (Clade 3); and protocolitis (Clade 4; also includes some noninvasive urogenital infections). Although the ancestral relationship between clades varied, most strains acted as donor and recipient of recombination with no evidence for barriers to genetic exchange. The niche-specific LGV and trachoma clades have undergone less recombination, although the opportunity for mixing with strains from other clades that infect the rectal and ocular mucosa, respectively, is evident. Furthermore, there are numerous occasions for gene conversion events through sequential infections at the same anatomic sites. The size of recombinant segments is relatively small (similar to 357 bp) compared with in vitro experiments of various C. trachomatis strains but is consistent with in vitro estimates for other bacterial species including Escherichia coli and Helicobacter pylori. Selection has also played a crucial role during the diversification of the organism. Clade 2 had the lowest nonsynonymous to synonymous ratio (dN/dS) but the highest effect of recombination, which is consistent with the widespread occurrence of synonymous substitutions in recombined genomic segments. The trachoma Clade 3 had the highest dN/dS estimates, which may be caused by an increased effect of genetic drift from niche specialization and a reduced effective population size. The degree of drift, selection, and recombination in C. trachomatis suggests that the challenge will remain to identify genomic regions that are stable and cross protective for the development of an efficacious vaccine.
Original languageEnglish
Pages (from-to)3933-3946
JournalMolecular Biology and Evolution
Volume29
Issue number12
DOIs
Publication statusPublished - Dec 2012

Keywords

  • recombination
  • Chlamydia trachomatis
  • population genomics
  • selection

Cite this