Phosphodiesterases in neurodegenerative disorders

Eva Bollen, Jos Prickaerts*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Cyclic nucleotide phosphodiesterases (PDEs) are responsible for the breakdown of cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). As such, they are crucial regulators of levels of cyclic nucleotide-mediated signaling. cAMP signaling and cGMP signaling have been associated with neuroplasticity and protection, and influencing their levels in the cell by inhibition of PDEs has become a much studied target for treatment in a wide array of disorders, including neurodegenerative disorders. In this review, we will focus on the involvement of PDEs in neurodegenerative disorders. In comparison with preclinical work, data on human patients are scarce. Alzheimer's disease is associated with changes in PDE4, PDE7, and PDE8 expression in the brain. Altered functioning of PDE4 as well as PDE11 is associated with major depressive disorder. In multiple sclerosis, there are indications of alterations in expression of several PDE subtypes in the central nervous system; however, evidence is indirect. In Huntington's disease and Parkinson's disease, most research has focused on PDE1B and PDE10, because of their abundant presence in striatal neurons. In another rare, neurodegenerative striatal motor disorder, that is, autosomal-dominant striatal degeneration, genetic defects in PDE8B gene are thought to underlie the neurodegenerative processes. Although the latter disorder has showed a causative dysfunction of PDEs, this does not hold for the neurodegenerative disorders discussed above, in which changes in PDE levels seemingly rather represent secondary changes and compensation to prior existing dysfunction. However, normalizing cyclic nucleotide signaling via PDE inhibition remains interesting for the treatment of neurodegenerative disorders.
Original languageEnglish
Pages (from-to)965-970
JournalIubmb Life
Issue number12
Publication statusPublished - Dec 2012


  • phosphodiesterases
  • neurodegeneration
  • cyclic nucleotides
  • Alzheimer's disease
  • depression
  • Huntington's disease

Cite this