Passive Newtonian noise suppression for gravitational-wave observatories based on shaping of the local topography

J. Harms*, S. Hild

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Web of Science)


In this article we propose a new method for reducing Newtonian noise (NN) in laser-interferometric gravitational wave detectors located on the Earth''s surface. We show that by excavating meter-scale recesses in the ground around the main test masses of a gravitational wave detector it is possible to reduce the coupling of Rayleigh wave driven seismic disturbances to test mass displacement. A discussion of the optimal recess shape is given and we use finite element simulations to derive the scaling of the NN suppression with the parameters of the recess as well as the frequency of the seismic excitation. Considering an interferometer similar to an Advance LIGO configuration, our simulations indicate a frequency dependent NN suppression factor of 2-4 in the relevant frequency range for a recesses of 4 m depth and a width and length of 11 m and 5 m, respectively. Though a retrofit to existing interferometers seems not impossible, the application of our concept to future infrastructures seems to provide a better benefit/cost ratio and therefore a higher feasibility.
Original languageEnglish
Article number185011
Number of pages9
JournalClassical and Quantum Gravity
Issue number18
Publication statusPublished - 21 Sept 2014
Externally publishedYes


  • gravitational waves
  • Newtonian noise
  • recess

Cite this