On loss aversion in bimatrix games

B.W.I. Driesen, H.J.M. Peters*, A. Perea ý Monsuwé

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In this article three different types of loss aversion equilibria in bimatrix games are studied. Loss aversion equilibria are Nash equilibria of games where players are loss averse and where the reference points-points below which they consider payoffs to be losses-are endogenous to the equilibrium calculation. The first type is the fixed point loss aversion equilibrium, introduced in Shalev (2000; Int. J. Game Theory 29(2):269) under the name of 'myopic loss aversion equilibrium.' There, the players' reference points depend on the beliefs about their opponents' strategies. The second type, the maximin loss aversion equilibrium, differs from the fixed point loss aversion equilibrium in that the reference points are only based on the carriers of the strategies, not on the exact probabilities. In the third type, the safety level loss aversion equilibrium, the reference points depend on the values of the own payoff matrices. Finally, a comparative statics analysis is carried out of all three equilibrium concepts in 2 x 2 bimatrix games. It is established when a player benefits from his opponent falsely believing that he is loss averse.

Original languageEnglish
Pages (from-to)367-391
Number of pages25
JournalTheory and Decision
Volume68
Issue number4
DOIs
Publication statusPublished - Apr 2010

Keywords

  • bimatrix games
  • loss aversion
  • reference-dependence
  • PROSPECT-THEORY
  • EQUILIBRIUM
  • MODEL
  • RISK

Fingerprint

Dive into the research topics of 'On loss aversion in bimatrix games'. Together they form a unique fingerprint.

Cite this