Abstract
We study the task of gathering k energy-constrained mobile agents in an undirected edge-weighted graph. Each agent is initially placed on an arbitrary node and has a limited amount of energy, which constrains the distance it can move. Since this may render gathering at a single point impossible, we study three variants of near-gathering: The goal is to move the agents into a configuration that minimizes either (i) the radius of a ball containing all agents, (ii) the maximum distance between any two agents, or (iii) the average distance between the agents. We prove that (i) is polynomial-time solvable, (ii) has a polynomial-time 2-approximation with a matching NP-hardness lower bound, while (iii) admits a polynomial-time [Formula presented]-approximation, but no FPTAS, unless P=NP. We extend some of our results to additive approximation.
Original language | English |
---|---|
Pages (from-to) | 35-46 |
Number of pages | 12 |
Journal | Theoretical Computer Science |
Volume | 849 |
DOIs | |
Publication status | Published - 6 Jan 2021 |
Keywords
- Mobile agents
- Power-aware robots
- Limited battery
- Gathering
- Graph algorithms
- Approximation
- Computational complexity