Multimodal Deep Learning Improves Recurrence Risk Prediction in Pediatric Low-Grade Gliomas

Maryamalsadat Mahootiha, Divyanshu Tak, Zezhong Ye, Anna Zapaishchykova, Jirapat Likitlersuang, Juan Carlos Climent Pardo, Aidan Boyd, Sridhar Vajapeyam, Rishi Chopra, Sanjay P Prabhu, Kevin X Liu, Hesham Elhalawani, Ali Nabavizadeh, Ariana Familiar, Sabine Mueller, Hugo J W L Aerts, Pratiti Bandopadhayay, Keith L Ligon, Daphne Haas-Kogan, Tina Y PoussaintHemin Ali Qadir, Ilangko Balasingham, Benjamin H Kann*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. METHODS: We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS: Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). CONCLUSIONS: DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
Original languageEnglish
JournalNeuro-oncology
DOIs
Publication statusE-pub ahead of print - 30 Aug 2024

Keywords

  • MRI
  • cancer prognosis
  • deep learning
  • event-free survival
  • pediatric low-grade glioma

Fingerprint

Dive into the research topics of 'Multimodal Deep Learning Improves Recurrence Risk Prediction in Pediatric Low-Grade Gliomas'. Together they form a unique fingerprint.

Cite this