TY - JOUR
T1 - Multimodal Deep Learning Improves Recurrence Risk Prediction in Pediatric Low-Grade Gliomas
AU - Mahootiha, Maryamalsadat
AU - Tak, Divyanshu
AU - Ye, Zezhong
AU - Zapaishchykova, Anna
AU - Likitlersuang, Jirapat
AU - Climent Pardo, Juan Carlos
AU - Boyd, Aidan
AU - Vajapeyam, Sridhar
AU - Chopra, Rishi
AU - Prabhu, Sanjay P
AU - Liu, Kevin X
AU - Elhalawani, Hesham
AU - Nabavizadeh, Ali
AU - Familiar, Ariana
AU - Mueller, Sabine
AU - Aerts, Hugo J W L
AU - Bandopadhayay, Pratiti
AU - Ligon, Keith L
AU - Haas-Kogan, Daphne
AU - Poussaint, Tina Y
AU - Qadir, Hemin Ali
AU - Balasingham, Ilangko
AU - Kann, Benjamin H
PY - 2024/8/30
Y1 - 2024/8/30
N2 - BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. METHODS: We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS: Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). CONCLUSIONS: DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
AB - BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. METHODS: We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS: Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). CONCLUSIONS: DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
KW - MRI
KW - cancer prognosis
KW - deep learning
KW - event-free survival
KW - pediatric low-grade glioma
U2 - 10.1093/neuonc/noae173
DO - 10.1093/neuonc/noae173
M3 - Article
SN - 1522-8517
JO - Neuro-oncology
JF - Neuro-oncology
ER -