TY - JOUR
T1 - Multi-Objective Portfolio Optimization Using a Quantum Annealer
AU - Aguilera, Esteban
AU - de Jong, Jins
AU - Phillipson, Frank
AU - Taamallah, Skander
AU - Vos, Mischa
N1 - data source: The code and data presented in this study are openly available in https://github.com/TNO-Quantum/problems.portfolio_optimization (accessed on 20 March 2024).
PY - 2024/5/1
Y1 - 2024/5/1
N2 - In this study, the portfolio optimization problem is explored, using a combination of classical and quantum computing techniques. The portfolio optimization problem with specific objectives or constraints is often a quadratic optimization problem, due to the quadratic nature of, for example, risk measures. Quantum computing is a promising solution for quadratic optimization problems, as it can leverage quantum annealing and quantum approximate optimization algorithms, which are expected to tackle these problems more efficiently. Quantum computing takes advantage of quantum phenomena like superposition and entanglement. In this paper, a specific problem is introduced, where a portfolio of loans need to be optimized for 2030, considering 'Return on Capital' and 'Concentration Risk' objectives, as well as a carbon footprint constraint. This paper introduces the formulation of the problem and how it can be optimized using quantum computing, using a reformulation of the problem as a quadratic unconstrained binary optimization (QUBO) problem. Two QUBO formulations are presented, each addressing different aspects of the problem. The QUBO formulation succeeded in finding solutions that met the emission constraint, although classical simulated annealing still outperformed quantum annealing in solving this QUBO, in terms of solutions close to the Pareto frontier. Overall, this paper provides insights into how quantum computing can address complex optimization problems in the financial sector. It also highlights the potential of quantum computing for providing more efficient and robust solutions for portfolio management.
AB - In this study, the portfolio optimization problem is explored, using a combination of classical and quantum computing techniques. The portfolio optimization problem with specific objectives or constraints is often a quadratic optimization problem, due to the quadratic nature of, for example, risk measures. Quantum computing is a promising solution for quadratic optimization problems, as it can leverage quantum annealing and quantum approximate optimization algorithms, which are expected to tackle these problems more efficiently. Quantum computing takes advantage of quantum phenomena like superposition and entanglement. In this paper, a specific problem is introduced, where a portfolio of loans need to be optimized for 2030, considering 'Return on Capital' and 'Concentration Risk' objectives, as well as a carbon footprint constraint. This paper introduces the formulation of the problem and how it can be optimized using quantum computing, using a reformulation of the problem as a quadratic unconstrained binary optimization (QUBO) problem. Two QUBO formulations are presented, each addressing different aspects of the problem. The QUBO formulation succeeded in finding solutions that met the emission constraint, although classical simulated annealing still outperformed quantum annealing in solving this QUBO, in terms of solutions close to the Pareto frontier. Overall, this paper provides insights into how quantum computing can address complex optimization problems in the financial sector. It also highlights the potential of quantum computing for providing more efficient and robust solutions for portfolio management.
KW - quantum computing
KW - portfolio management
KW - quantum annealing
KW - MODEL
U2 - 10.3390/math12091291
DO - 10.3390/math12091291
M3 - Article
SN - 2227-7390
VL - 12
JO - Mathematics
JF - Mathematics
IS - 9
M1 - 1291
ER -