Metabolic and electrophysiological changes in the basal ganglia of transgenic Huntington's disease rats

Rinske Vlamings, Adbelhamid Benazzouz, Jonathan Chetrit, Marcus L. F. Janssen, Ramazan Kozan, Veerle Visser-Vandewalle, Harry W. M. Steinbusch, Stephan von Hoersten, Yasin Temel*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Huntington's disease (HD) is characterized by neuronal loss in the striatum, ultimately leading to an 'imbalance' in the electrical activity of the basal ganglia-thalamocortical circuits. To restore this 'imbalance' in HD patients, which is held responsible for (some) of the motor symptoms, different basal ganglia nuclei have been targeted for surgical therapies, such as ablative surgery and deep brain stimulation. However, evidence to target brain nuclei for surgical therapies in HD is lacking. We reasoned that a neuronal and metabolic mapping of the basal ganglia nuclei could identify a functional substrate for therapeutic interventions. Therefore, the aim of the present study was to investigate the metabolic and neuronal activity of basal ganglia nuclei in a transgenic rat model of HD (tgHD). Subjects were 10-12 month old tgHD rats and wildtype littermates. We examined the striatum, globus pallidus, entopeduncular nucleus, the subthalamic nucleus and substantia nigra at different levels. First, we determined the overall neuronal activity at a supracellular level, by cytochrome oxidase histochemistry. Secondly, we determined the subcellular metabolic activity, by immunohistochemistry for peroxisome proliferator-activated receptor-gamma transcription co-activator (PGC-1 alpha), a key player in the mitochondrial machinery. Finally, we performed extracellular single unit recordings in the nuclei to determine the cellular activity. In tgHD rats, optical density analysis showed a significantly increased cytochrome oxidase levels in the globus pallidus and subthalamic nucleus when compared to controls. PGC-1 alpha expression was only enhanced in the subthalamic nucleus and electrophysiological recordings revealed decreased firing frequency of the majority of the neurons in the globus pallidus and increased firing frequency of the majority of the neurons in the subthalamic nucleus. Altogether, our results suggest that the globus pallidus and subthalamic nucleus play a role in the neurobiology of HD and can be potential targets for therapeutic interventions.
Original languageEnglish
Pages (from-to)488-494
JournalNeurobiology of Disease
Volume48
Issue number3
DOIs
Publication statusPublished - Dec 2012

Keywords

  • Huntington's disease
  • Basal ganglia
  • Transgenic rat
  • Cytochrome oxidase
  • PGC-1 alpha
  • Electrophysiology

Cite this