Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT

Nico H. L. Kuijpers, Evelien Hermeling, Joost Lumens, Huub M. M. ten Eikelder, Tammo Delhaas*, Frits W. Prinzen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics. Each ventricular wall was composed of multiple mechanically and electrically coupled myocardial segments. MEC was incorporated by allowing adaptation of L-type Ca2+ current aiming at minimal dispersion of local external work, an approach that we previously applied to replicate T-wave memory in a synchronous heart after a period of asynchronous activation. LBBB instantaneously decreased left-ventricular stroke work and increased end-diastolic volume. During sustained LBBB, MEC reduced intraventricular dispersion of mechanical workload and repolarization. However, MEC-induced reduction in contractility in late-activated regions was larger than the contractility increase in early-activated regions, resulting in further decrease of stroke work and increase of end-diastolic volume. Upon the start of CRT, stroke work increased despite a wider dispersion of mechanical workload. During sustained CRT, MEC-induced reduction in dispersion of workload and repolarization coincided with a further reduction in end-diastolic volume. In conclusion, MEC may represent a useful framework for better understanding the long-term changes in cardiac
Original languageEnglish
Pages (from-to)H1644-H1659
JournalAmerican Journal of Physiology-heart and Circulatory Physiology
Issue number12
Publication statusPublished - 15 Jun 2014


  • cardiac resynchronization therapy
  • excitation-contraction coupling
  • left bundle-branch block
  • mechano-electrical coupling

Cite this