TY - JOUR
T1 - Measures and Metrics for Feasibility of Proof-of-Concept Studies With Human Immunodeficiency Virus Rapid Point-of-Care Technologies The Evidence and the Framework
AU - Pai, Nitika Pant
AU - Chiavegatti, Tiago
AU - Vijh, Rohit
AU - Karatzas, Nicolaos
AU - Daher, Jana
AU - Smallwood, Megan
AU - Wong, Tom
AU - Engel, Nora
PY - 2017/12/16
Y1 - 2017/12/16
N2 - Objective: Pilot (feasibility) studies form a vast majority of diagnostic studies with point-of-care technologies but often lack use of clear measures/metrics and a consistent framework for reporting and evaluation. To fill this gap, we systematically reviewed data to (a) catalog feasibility measures/metrics and (b) propose a framework.Methods: For the period January 2000 to March 2014, 2 reviewers searched 4 databases (MEDLINE, EMBASE, CINAHL, Scopus), retrieved 1441 citations, and abstracted data from 81 studies. We observed 2 major categories of measures, that is, implementation centered and patient centered, and 4 subcategories of measures, that is, feasibility, acceptability, preference, and patient experience. We defined and delineated metrics and measures for a feasibility framework. We documented impact measures for a comparison.Findings: We observed heterogeneity in reporting of metrics as well as misclassification and misuse of metrics within measures. Although we observed poorly defined measures and metrics for feasibility, preference, and patient experience, in contrast, acceptability measure was the best defined. For example, within feasibility, metrics such as consent, completion, new infection, linkage rates, and turnaround times were misclassified and reported. Similarly, patient experience was variously reported as test convenience, comfort, pain, and/or satisfaction. In contrast, within impact measures, all the metrics were well documented, thus serving as a good baseline comparator. With our framework, we classified, delineated, and defined quantitative measures and metrics for feasibility.Conclusions: Our framework, with its defined measures/metrics, could reduce misclassification and improve the overall quality of reporting for monitoring and evaluation of rapid point-of-care technology strategies and their context-driven optimization.
AB - Objective: Pilot (feasibility) studies form a vast majority of diagnostic studies with point-of-care technologies but often lack use of clear measures/metrics and a consistent framework for reporting and evaluation. To fill this gap, we systematically reviewed data to (a) catalog feasibility measures/metrics and (b) propose a framework.Methods: For the period January 2000 to March 2014, 2 reviewers searched 4 databases (MEDLINE, EMBASE, CINAHL, Scopus), retrieved 1441 citations, and abstracted data from 81 studies. We observed 2 major categories of measures, that is, implementation centered and patient centered, and 4 subcategories of measures, that is, feasibility, acceptability, preference, and patient experience. We defined and delineated metrics and measures for a feasibility framework. We documented impact measures for a comparison.Findings: We observed heterogeneity in reporting of metrics as well as misclassification and misuse of metrics within measures. Although we observed poorly defined measures and metrics for feasibility, preference, and patient experience, in contrast, acceptability measure was the best defined. For example, within feasibility, metrics such as consent, completion, new infection, linkage rates, and turnaround times were misclassified and reported. Similarly, patient experience was variously reported as test convenience, comfort, pain, and/or satisfaction. In contrast, within impact measures, all the metrics were well documented, thus serving as a good baseline comparator. With our framework, we classified, delineated, and defined quantitative measures and metrics for feasibility.Conclusions: Our framework, with its defined measures/metrics, could reduce misclassification and improve the overall quality of reporting for monitoring and evaluation of rapid point-of-care technology strategies and their context-driven optimization.
KW - metrics
KW - measures
KW - framework
KW - feasibility
KW - point-of-care
KW - TO-CHILD TRANSMISSION
KW - HIV TESTING UPTAKE
KW - EMERGENCY-DEPARTMENT
KW - SOUTH-AFRICA
KW - DIAGNOSTIC-ACCURACY
KW - PREGNANT-WOMEN
KW - LOW-PREVALENCE
KW - COMMUNITY
KW - ACCEPTABILITY
KW - SETTINGS
U2 - 10.1097/POC.0000000000000147
DO - 10.1097/POC.0000000000000147
M3 - (Systematic) Review article
C2 - 29333105
SN - 1533-029X
VL - 16
SP - 141
EP - 150
JO - Point of Care
JF - Point of Care
IS - 4
ER -