Loss-of-function variants in CUL3 cause a syndromic neurodevelopmental disorder

Patrick R Blackburn*, Frédéric Ebstein, Tzung-Chien Hsieh, Marialetizia Motta, Francesca Clementina Radio, Johanna C Herkert, Tuula Rinne, Isabelle Thiffault, Michele Rapp, Mariel Alders, Saskia Maas, Bénédicte Gerard, Thomas Smol, Catherine Vincent-Delorme, Benjamin Cogné, Bertrand Isidor, Marie Vincent, Ruxandra Bachmann-Gagescu, Anita Rauch, Pascal JosetGiovanni Battista Ferrero, Andrea Ciolfi, Thomas Husson, Anne-Marie Guerrot, Carlos Bacino, Colleen Macmurdo, Stephanie S Thompson, Jill A Rosenfeld, Laurence Faivre, Frederic Tran Mau-Them, Wallid Deb, Virginie Vignard, Pankaj B Agrawal, Jill A Madden, Alice Goldenberg, François Lecoquierre, Michael Zech, Holger Prokisch, Ján Necpál, Robert Jech, Juliane Winkelmann, Monika Turčanová Koprušáková, Vassiliki Konstantopoulou, John R Younce, Marwan Shinawi, Chloe Mighton, Charlotte Fung, Chantal Morel, Jordan Lerner- Ellis, Stephanie DiTroia, Magalie Barth, Dominique Bonneau, Ingrid Krapels, Sander Stegmann, Vyne van der Schoot, Theresa Brunet, Cornelia Bußmann, Cyril Mignot, Thomas Courtin, Claudia Ravelli, Boris Keren, Alban Ziegler, Linda Hasadsri, Pavel N Pichurin, Eric W Klee, Katheryn Grand, Pedro A Sanchez-Lara, Elke Krüger, Stéphane Bézieau, Hannah Klinkhammer, Peter Michael Krawitz, Evan E Eichler, Marco Tartaglia, Sébastien Küry, Tianyun Wang*

*Corresponding author for this work

Research output: Working paper / PreprintPreprint

Abstract

PURPOSE: De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism.

METHODS: Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells.

RESULTS: We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells.

CONCLUSION: Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.

Original languageEnglish
Number of pages37
DOIs
Publication statusPublished - 16 Jun 2023

Publication series

SeriesmedRxiv : the preprint server for Health Sciences

Fingerprint

Dive into the research topics of 'Loss-of-function variants in CUL3 cause a syndromic neurodevelopmental disorder'. Together they form a unique fingerprint.

Cite this