Abstract
BackgroundSocietal expenditures on work-disability benefits is high in most Western countries. As a precursor of long-term work restrictions, long-term sickness absence (LTSA) is under continuous attention of policy makers. Different healthcare professionals can play a role in identification of persons at risk of LTSA but are not well trained. A risk prediction model can support risk stratification to initiate preventative interventions. Unfortunately, current models lack generalizability or do not include a comprehensive set of potential predictors for LTSA. This study is set out to develop and validate a multivariable risk prediction model for LTSA in the coming year in a working population aged 45-64years.MethodsData from 11,221 working persons included in the prospective Study on Transitions in Employment, Ability and Motivation (STREAM) conducted in the Netherlands were used to develop a multivariable risk prediction model for LTSA lasting >= 28 accumulated working days in the coming year. Missing data were imputed using multiple imputation. A full statistical model including 27 pre-selected predictors was reduced to a practical model using backward stepwise elimination in a logistic regression analysis across all imputed datasets. Predictive performance of the final model was evaluated using the Area Under the Curve (AUC), calibration plots and the Hosmer-Lemeshow (H&L) test. External validation was performed in a second cohort of 5604 newly recruited working persons.ResultsEleven variables in the final model predicted LTSA: older age, female gender, lower level of education, poor self-rated physical health, low weekly physical activity, high self-rated physical job load, knowledge and skills not matching the job, high number of major life events in the previous year, poor self-rated work ability, high number of sickness absence days in the previous year and being self-employed. The model showed good discrimination (AUC 0.76 (interquartile range 0.75-0.76)) and good calibration in the external validation cohort (H&L test: p =0.41).ConclusionsThis multivariable risk prediction model distinguishes well between older workers with high- and low-risk for LTSA in the coming year. Being easy to administer, it can support healthcare professionals in determining which persons should be targeted for tailored preventative interventions.
Original language | English |
---|---|
Article number | 699 |
Number of pages | 9 |
Journal | BMC Public Health |
Volume | 20 |
Issue number | 1 |
DOIs | |
Publication status | Published - 15 May 2020 |
Keywords
- Prediction model
- Prediction
- Long-term sickness absence
- Prospective cohort study
- Prevention
- Calibration
- Discrimination
- Development
- External validation
- Working persons
- LOST PRODUCTIVITY
- EMPLOYEES
- FREQUENT
- HEALTH
- INDIVIDUALS
- DISABILITY
- WORKERS