Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of In Vivo Tissue-Engineered Blood Vessels

F.F.R. Damanik, C.T. Rothuizen, R. Lalai, S. Khoenkhoen, C. van Blitterswijk, J.I. Rotmans, L. Moroni*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The development of a well-designed tissue-engineered blood vessel (TEBV) still remains a challenge. In recent years, approaches in which the host response to implanted biomaterials is used to generate vascular constructs within the patient's body have gained increasing interest. The delivery of growth factors to these in situ-engineered vascular grafts might enhance myofibroblast recruitment and the secretion of essential extracellular matrix proteins, thereby optimizing their functional properties. Layer-by-layer (LbL) coating has emerged as an innovative technology for the controlled delivery of growth factors in tissue engineering applications. In this study, we combined the use of surface-etched polymeric rods with LbL coatings to control the delivery of TGF-beta 1, PDGF-BB, and IGF-1 and steer the foreign body response toward the formation of a functional vascular graft. Results showed that the regenerated tissue is composed of elastin, glycosaminoglycans, and circumferentially oriented collagen fibers, without calcification or systemic spill of the released growth factors. Functional controlled delivery was observed, whereas myofibroblast-rich tissue capsules were formed with enhanced collagen and elastin syntheses using TGF-beta 1 and TGF-beta 1/PDGF-BB releasing rods, when compared to control rods that were solely surface-engineered by chloroform etching. By combining our optimized LbL method and surface-engineered rods in an in vivo bioreactor approach, we could regulate the fate and ECM composition of in situ-engineered vascular grafts to create a successful in vivo vascular tissue-engineered replacement.
Original languageEnglish
Pages (from-to)28591-28603
Number of pages13
JournalACS Applied Materials & Interfaces
Volume14
Issue number25
Early online date13 Jun 2022
DOIs
Publication statusPublished - 13 Jun 2022

Keywords

  • in situ tissue engineering
  • in vivo bioreactor
  • tissue-engineered blood vessels
  • vascular access
  • layer-by-layer
  • growth factor release
  • biomaterials
  • SMOOTH-MUSCLE-CELLS
  • FACTOR-BETA
  • TGF-BETA
  • MESSENGER-RNA
  • GENE-EXPRESSION
  • FACTOR DELIVERY
  • RAT AORTA
  • ELASTIN
  • MYOFIBROBLASTS
  • REGENERATION

Fingerprint

Dive into the research topics of 'Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of In Vivo Tissue-Engineered Blood Vessels'. Together they form a unique fingerprint.

Cite this