Limitations of the semisynthetic library approach for obtaining human monoclonal autoantibodies to the thyrotropin receptor of Graves' disease.

J.H. van der Heijden, T.W.A. de Bruin, K.A. Glaudemans, J. de Kruif, J.D. Banga, T. Logtenberg

Research output: Contribution to journalArticleAcademicpeer-review


Department of Immunology, Utrecht University Hospital, Utrecht, The Netherlands.

Graves' disease (GD) is characterized by the presence of autoantibodies against the TSH-receptor (TSH-R) which are pathogenic and, upon binding to the receptor, trigger intracellular signal transduction. The autoantibodies are oligoclonal and as they are responsible for disease activity, their characterization would lead to a better understanding of the development of GD. Attempts to isolate anti-TSH-R antibodies from patients have proved to be difficult due to the exceedingly low serum levels due to rarity of these B cells, together with difficulties in obtaining purified TSH-R capable of interacting with patients autoantibodies. We employed phage antibody display technology and performed selection with a previously characterized semisynthetic antibody library on the purified extracellular ectodomain of the TSH-R. We report the isolation of six different anti-TSH-R monoclonal phage antibodies (moPhabs) from this library. All the moPhabs recognized TSH-R and its recombinant fragments by Western blotting, but failed to recognize the native TSH-R by flow cytometry. Consequently, the moPhabs did not lead to TSH-R activation. As these were the first moPhabs to TSH-R, they were analysed in terms of nucleotide and amino acid sequence and epitope specificity on the receptor. The moPhabs used immunoglobulin VH1 and VH3 germ line genes, all associated with Vlambda3 genes. Interestingly, the CDR3 regions of all moPhabs were remarkably similar, though not identical. In light of the common CDR3 usage, the epitopes recognized on TSH-R appeared to be restricted to amino acids residues 405-411 and 357-364. In summary, our results show that semisynthetic libraries may be limited in isolating human monoclonal antibodies that resemble pathogenic antithyrotropin receptor autoantibodies present in patients with GD. It is likely that until preparations of purified TSH-R that can be recognized by patients autoantibodies become available, similar to the recently described glycosylphosphatidylinositol (GPI) anchored TSH-R ectodomain, monoclonal antibodies from phage antibody display to TSH-R will be limited for isolating the rare, pathogenic antibodies of GD.
Original languageEnglish
Pages (from-to)205-212
Number of pages8
JournalClinical and Experimental Immunology
Issue number2
Publication statusPublished - 1 Jan 1999

Cite this