Laser with an in-loop relative frequency stability of 1.0x10(-21) on a 100-ms time scale for gravitational-wave detection

F. Acernese*, M. Alshourbagy, F. Antonucci, S. Aoudia, K.G. Arun, P. Astone, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, T.S. Bauer, S. Bigotta, S. Birindelli, M.A. Bizouard, C. Boccara, F. Bondu, L. Bonelli, L. Bosi, S. Braccini, C. BradaschiaA. Brillet, V. Brisson, H.J. Bulten, D. Buskulic, G. Cagnoli, E. Calloni, E. Campagna, B. Canuel, F. Carbognani, L. Carbone, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, S. Chatterji, F. Cleva, E. Coccia, J. Colas, M. Colombini, C. Corda, A. Corsi, F. Cottone, J.P. Coulon, E. Cuoco, S. D'Antonio, A. Dari, V. Dattilo, M. Davier, R. De Rosa, S. Hild, J.F.J. van den Brand

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


We report on the stabilization of the laser frequency for the Virgo gravitational-wave detector. We have obtained a frequency noise level, measured in loop, of 1.9x10(-7) Hz/Hz at 10 Hz for the 1064 nm laser; this value is limited by shot noise. The Allan standard deviation for relative frequency noise is 1.0x10(-21) on a 100-ms time scale. The spectral density of the laser frequency noise is negligible in the channel where gravitational waves ought to appear and meets the specifications for the target spectral resolution of the Virgo interferometer in the 10 Hz-10 kHz detection bandwidth.
Original languageEnglish
Article number053824
Number of pages5
JournalPhysical Review A
Issue number5
Publication statusPublished - 1 May 2009
Externally publishedYes


  • gravitational wave detectors
  • light interferometry

Cite this