TY - JOUR
T1 - Intestinal Microbiota in Postmenopausal Breast Cancer Patients and Controls
AU - Aarnoutse, Romy
AU - Hillege, Lars E
AU - Ziemons, Janine
AU - De Vos-Geelen, Judith
AU - de Boer, Maaike
AU - Aerts, Elvira M E R
AU - Vriens, Birgit E P J
AU - van Riet, Yvonne
AU - Vincent, Jeroen
AU - van de Wouw, Agnes J
AU - Le, Giang N
AU - Venema, Koen
AU - Rensen, Sander S
AU - Penders, John
AU - Smidt, Marjolein L
PY - 2021/12/9
Y1 - 2021/12/9
N2 - BACKGROUND: Previous preclinical and clinical research has investigated the role of intestinal microbiota in carcinogenesis. Growing evidence exists that intestinal microbiota can influence breast cancer carcinogenesis. However, the role of intestinal microbiota in breast cancer needs to be further investigated. This study aimed to identify the microbiota differences between postmenopausal breast cancer patients and controls.PATIENTS AND METHODS: This prospective cohort study compared the intestinal microbiota richness, diversity, and composition in postmenopausal histologically proven ER+/HER2- breast cancer patients and postmenopausal controls. Patients scheduled for (neo)adjuvant adriamycin, cyclophosphamide (AC), and docetaxel (D), or endocrine therapy (tamoxifen) were prospectively enrolled in a multicentre cohort study in the Netherlands. Patients collected a faecal sample and completed a questionnaire before starting systemic cancer treatment. Controls, enrolled from the National Dutch Breast Cancer Screening Programme, also collected a faecal sample and completed a questionnaire. Intestinal microbiota was analysed by amplicon sequencing of the 16S rRNA V4 gene region.RESULTS: In total, 81 postmenopausal ER+/HER2- breast cancer patients and 67 postmenopausal controls were included, resulting in 148 faecal samples. Observed species richness, Shannon index, and overall microbial community structure were not significantly different between breast cancer patients and controls. There was a significant difference in overall microbial community structure between breast cancer patients scheduled for adjuvant treatment, neoadjuvant treatment, and controls at the phylum (p = 0.042) and genus levels (p = 0.015). Dialister (p = 0.001) and its corresponding family Veillonellaceae (p = 0.001) were higher in patients scheduled for adjuvant treatment, compared to patients scheduled for neoadjuvant treatment. Additional sensitivity analysis to correct for the potential confounding effect of prophylactic antibiotic use, indicated no differences in microbial community structure between patients scheduled for neoadjuvant systemic treatment, adjuvant systemic treatment, and controls at the phylum (p = 0.471) and genus levels (p = 0.124).CONCLUSIONS: Intestinal microbiota richness, diversity, and composition are not different between postmenopausal breast cancer patients and controls. The increased relative abundance of Dialister and Veillonellaceae was observed in breast cancer patients scheduled for adjuvant treatment, which might be caused by a relative decrease in other bacteria due to prophylactic antibiotic administration rather than an absolute increase.
AB - BACKGROUND: Previous preclinical and clinical research has investigated the role of intestinal microbiota in carcinogenesis. Growing evidence exists that intestinal microbiota can influence breast cancer carcinogenesis. However, the role of intestinal microbiota in breast cancer needs to be further investigated. This study aimed to identify the microbiota differences between postmenopausal breast cancer patients and controls.PATIENTS AND METHODS: This prospective cohort study compared the intestinal microbiota richness, diversity, and composition in postmenopausal histologically proven ER+/HER2- breast cancer patients and postmenopausal controls. Patients scheduled for (neo)adjuvant adriamycin, cyclophosphamide (AC), and docetaxel (D), or endocrine therapy (tamoxifen) were prospectively enrolled in a multicentre cohort study in the Netherlands. Patients collected a faecal sample and completed a questionnaire before starting systemic cancer treatment. Controls, enrolled from the National Dutch Breast Cancer Screening Programme, also collected a faecal sample and completed a questionnaire. Intestinal microbiota was analysed by amplicon sequencing of the 16S rRNA V4 gene region.RESULTS: In total, 81 postmenopausal ER+/HER2- breast cancer patients and 67 postmenopausal controls were included, resulting in 148 faecal samples. Observed species richness, Shannon index, and overall microbial community structure were not significantly different between breast cancer patients and controls. There was a significant difference in overall microbial community structure between breast cancer patients scheduled for adjuvant treatment, neoadjuvant treatment, and controls at the phylum (p = 0.042) and genus levels (p = 0.015). Dialister (p = 0.001) and its corresponding family Veillonellaceae (p = 0.001) were higher in patients scheduled for adjuvant treatment, compared to patients scheduled for neoadjuvant treatment. Additional sensitivity analysis to correct for the potential confounding effect of prophylactic antibiotic use, indicated no differences in microbial community structure between patients scheduled for neoadjuvant systemic treatment, adjuvant systemic treatment, and controls at the phylum (p = 0.471) and genus levels (p = 0.124).CONCLUSIONS: Intestinal microbiota richness, diversity, and composition are not different between postmenopausal breast cancer patients and controls. The increased relative abundance of Dialister and Veillonellaceae was observed in breast cancer patients scheduled for adjuvant treatment, which might be caused by a relative decrease in other bacteria due to prophylactic antibiotic administration rather than an absolute increase.
KW - ASSOCIATIONS
KW - RISK
KW - breast neoplasm
KW - faeces
KW - gut microbiota
KW - microbiome
KW - oestrogen receptor positive
KW - post menopause
U2 - 10.3390/cancers13246200
DO - 10.3390/cancers13246200
M3 - Article
C2 - 34944820
SN - 2072-6694
VL - 13
JO - Cancers
JF - Cancers
IS - 24
M1 - 6200
ER -