TY - JOUR
T1 - Integrative Clustering in Mass Spectrometry Imaging for Enhanced Patient Stratification
AU - Balluff, Benjamin
AU - Buck, Achim
AU - Martin-Lorenzo, Marta
AU - Dewez, Frederic
AU - Langer, Rupert
AU - McDonnell, Liam A.
AU - Walch, Axel
AU - Heeren, Ron M. A.
N1 - Funding Information:
B.B. thanks the Province of Limburg of the Netherlands, ITEA, and RVO (ITEA 151003/ITEA 14001) for their financial support. B.B., A.B., M.M.-L., F.D., L.A.M.D., and A.W. acknowledge the support of the European Union (ERA-NET: TRANSCAN 2). A.W. is funded by the Ministry of Education and Research of the Federal Republic of Germany (BMBF; Grant Nos. 01ZX1310B, 01KT16015), the Deutsche Forschungsgemeinschaft (Grant Nos. SFB 824 TP Z02/C4, CRC/TRR 205 S01), and the Deutsche Krebshilfe (No. 70112617).
Publisher Copyright:
© 2018 The Authors. Proteomics – Clinical Application published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2019/1
Y1 - 2019/1
N2 - Scope In biomedical research, mass spectrometry imaging (MSI) can obtain spatially-resolved molecular information from tissue sections. Especially matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on the type of matrix, the detection of a broad variety of molecules ranging from metabolites to proteins, thereby facilitating the collection of multilevel molecular data. Lately, integrative clustering techniques have been developed that make use of the complementary information of multilevel molecular data in order to better stratify patient cohorts, but which have not yet been applied in the field of MSI. Materials and Methods In this study, the potential of integrative clustering is investigated for multilevel molecular MSI data to subdivide cancer patients into different prognostic groups. Metabolomic and peptidomic data are obtained by MALDI-MSI from a tissue microarray containing material of 46 esophageal cancer patients. The integrative clustering methods Similarity Network Fusion, iCluster, and moCluster are applied and compared to non-integrated clustering. Conclusion The results show that the combination of multilevel molecular data increases the capability of integrative algorithms to detect patient subgroups with different clinical outcome, compared to the single level or concatenated data. This underlines the potential of multilevel molecular data from the same subject using MSI for subsequent integrative clustering.
AB - Scope In biomedical research, mass spectrometry imaging (MSI) can obtain spatially-resolved molecular information from tissue sections. Especially matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on the type of matrix, the detection of a broad variety of molecules ranging from metabolites to proteins, thereby facilitating the collection of multilevel molecular data. Lately, integrative clustering techniques have been developed that make use of the complementary information of multilevel molecular data in order to better stratify patient cohorts, but which have not yet been applied in the field of MSI. Materials and Methods In this study, the potential of integrative clustering is investigated for multilevel molecular MSI data to subdivide cancer patients into different prognostic groups. Metabolomic and peptidomic data are obtained by MALDI-MSI from a tissue microarray containing material of 46 esophageal cancer patients. The integrative clustering methods Similarity Network Fusion, iCluster, and moCluster are applied and compared to non-integrated clustering. Conclusion The results show that the combination of multilevel molecular data increases the capability of integrative algorithms to detect patient subgroups with different clinical outcome, compared to the single level or concatenated data. This underlines the potential of multilevel molecular data from the same subject using MSI for subsequent integrative clustering.
KW - cancer
KW - integrative clustering
KW - mass spectrometry imaging
KW - prognosis
KW - GENOMIC CHARACTERIZATION
U2 - 10.1002/prca.201800137
DO - 10.1002/prca.201800137
M3 - Article
SN - 1862-8346
VL - 13
JO - Proteomics Clinical Applications
JF - Proteomics Clinical Applications
IS - 1
M1 - 1800137
ER -