Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual

Du Lei, Walter H. L. Pinaya, Jonathan Young, Therese van Amelsvoort, Machteld Marcelis, Gary Donohoe, David O. Mothersill, Aiden Corvin, Sandra Vieira, Xiaoqi Huang, Su Lui, Cristina Scarpazza, Celso Arango, Ed Bullmore, Qiyong Gong*, Philip McGuire, Andrea Mechelli

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Original languageEnglish
Pages (from-to)1119-1135
Number of pages17
JournalHuman Brain Mapping
Volume41
Issue number5
Early online date18 Nov 2019
DOIs
Publication statusPublished - 1 Apr 2020

Keywords

  • functional connectivity
  • graph theoretical analysis
  • machine learning
  • neuroimaging
  • schizophrenia
  • FUNCTIONAL CONNECTIVITY PATTERNS
  • MATTER VOLUME ABNORMALITIES
  • MAJOR DEPRESSIVE DISORDER
  • SUPPORT VECTOR MACHINE
  • SMALL-WORLD NETWORKS
  • ULTRA-HIGH-RISK
  • 1ST-EPISODE PSYCHOSIS
  • BRAIN NETWORKS
  • DISCRIMINATIVE ANALYSIS
  • IMAGING BIOMARKERS

Cite this