Increasing the diversity of nylonases for poly(ester amide) degradation

Jan de Witt, Maike-Elisa Ostheller, Kenneth Jensen, Christian A. M. R. van Slagmaat, Tino Polen, Gunnar Seide, Stephan Thies, Benedikt Wynands, Nick Wierckx*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Global production of synthetic polyamides (PA), or nylons, is increasing while recycling rates are currently below 5% contributing to the global plastics crisis. Enzymatic depolymerization is a powerful strategy to overcome the drawbacks of mechanical and chemical recycling and has the potential to increase PA recycling rates. However, enzymatic depolymerization of PA is currently limited to a small group of nylonases (NylC) that exhibit low activities making them unsuitable for efficient enzymatic recycling. In this study, we extend the diversity of nylonases, namely NylC 1, NylC 2, and NylC 3 by library screenings and in silico analysis. Three novel nylonases were identified that showed varying sequence identities ranging from 84 to 32% compared to the previously characterized NylC p2 from Paenarthrobacter ureafaciens. Activity of these nylonase candidates towards cyclic PA-oligomers was confirmed via the detection of soluble degradation products. These nylonases were also active on synthesized poly(ester amides) (PEA), and this activity was synergistically increased by combination with the leaf and branch compost cutinase LCC resulting in the hydrolysis of approximately 1% of the total polymer. Overall, our discoveries greatly increase the sequence space of NylC enzymes for future enzyme engineering strategies to boost their activities, and they show the potential of PEA for tuning the biodegradability of performance polymers. Thereby, this study leads the path for developing efficient enzymatic PA and PEA depolymerization processes, revealing significant insights into combining the contrary parameters of performance and biodegradability of polymers.

Original languageEnglish
Pages (from-to)9911-9922
Number of pages12
JournalGreen Chemistry
Volume26
Issue number18
DOIs
Publication statusPublished - 6 Aug 2024

Keywords

  • GLASS-TRANSITION
  • PLASMID POAD2
  • CYCLIC DIMER
  • HYDROLASE
  • ACID
  • POLYETHYLENE
  • PURIFICATION
  • WATER
  • GENE
  • NYLC

Fingerprint

Dive into the research topics of 'Increasing the diversity of nylonases for poly(ester amide) degradation'. Together they form a unique fingerprint.

Cite this