TY - JOUR
T1 - Increased myocardial stiffness more than impaired relaxation function limits cardiac performance during exercise in heart failure with preserved ejection fraction
T2 - a virtual patient study
AU - van Loon, Tim
AU - Knackstedt, Christian
AU - Cornelussen, Richard
AU - Reesink, Koen
AU - Brunner-La Rocca, Hanspeter
AU - Delhaas, Tammo
AU - van Empel, Vanessa
AU - Lumens, Joost
PY - 2020
Y1 - 2020
N2 - Aims:
The relative impact of left ventricular (LV) diastolic dysfunction (LVDD) and impaired left atrial (LA) function on cardiovascular haemodynamics in heart failure with preserved ejection fraction (HFpEF) is largely unknown. We performed virtual patient simulations to elucidate the relative effects of these factors on haemodynamics at rest and during exercise.
Methods and results:
The CircAdapt cardiovascular system model was used to simulate cardiac haemodynamics in wide ranges of impaired LV relaxation function, increased LV passive stiffness, and impaired LA function. Simulations showed that LV ejection fraction (LVEF) was preserved (>50%), despite these changes in LV and LA function. Impairment of LV relaxation function decreased E/A ratio and mildly increased LV filling pressure at rest. Increased LV passive stiffness resulted in increased E/A ratio, LA dilation and markedly elevated LV filling pressure. Impairment of LA function increased E/A ratio and LV filling pressure, explaining inconsistent grading of LVDD using echocardiographic indices. Exercise simulations showed that increased LV passive stiffness exerts a stronger exercise-limiting effect than impaired LV relaxation function does, especially with impaired LA function.
Conclusion:
The CircAdapt model enabled realistic simulation of virtual HFpEF patients, covering a wide spectrum of LVDD and related limitations of cardiac exercise performance, all with preserved resting LVEF. Simulations suggest that increased LV passive stiffness, more than impaired relaxation function, reduces exercise tolerance, especially when LA function is impaired. In future studies, the CircAdapt model can serve as a valuable platform for patient-specific simulations to identify the disease substrate(s) underlying the individual HFpEF patient’s cardiovascular phenotype.
AB - Aims:
The relative impact of left ventricular (LV) diastolic dysfunction (LVDD) and impaired left atrial (LA) function on cardiovascular haemodynamics in heart failure with preserved ejection fraction (HFpEF) is largely unknown. We performed virtual patient simulations to elucidate the relative effects of these factors on haemodynamics at rest and during exercise.
Methods and results:
The CircAdapt cardiovascular system model was used to simulate cardiac haemodynamics in wide ranges of impaired LV relaxation function, increased LV passive stiffness, and impaired LA function. Simulations showed that LV ejection fraction (LVEF) was preserved (>50%), despite these changes in LV and LA function. Impairment of LV relaxation function decreased E/A ratio and mildly increased LV filling pressure at rest. Increased LV passive stiffness resulted in increased E/A ratio, LA dilation and markedly elevated LV filling pressure. Impairment of LA function increased E/A ratio and LV filling pressure, explaining inconsistent grading of LVDD using echocardiographic indices. Exercise simulations showed that increased LV passive stiffness exerts a stronger exercise-limiting effect than impaired LV relaxation function does, especially with impaired LA function.
Conclusion:
The CircAdapt model enabled realistic simulation of virtual HFpEF patients, covering a wide spectrum of LVDD and related limitations of cardiac exercise performance, all with preserved resting LVEF. Simulations suggest that increased LV passive stiffness, more than impaired relaxation function, reduces exercise tolerance, especially when LA function is impaired. In future studies, the CircAdapt model can serve as a valuable platform for patient-specific simulations to identify the disease substrate(s) underlying the individual HFpEF patient’s cardiovascular phenotype.
U2 - 10.1093/ehjdh/ztaa009
DO - 10.1093/ehjdh/ztaa009
M3 - Article
SN - 2634-3916
VL - 1
SP - 40
EP - 50
JO - European Heart Journal - Digital Health
JF - European Heart Journal - Digital Health
IS - 1
ER -