TY - JOUR
T1 - Improving the Hk-bound on the price of stability in undirected Shapley network design games
AU - Disser, Yann
AU - Feldmann, Andreas Emil
AU - Klimm, Max
AU - Mihalák, Matús
PY - 2015
Y1 - 2015
N2 - In this article we show that the price of stability of shapley network design games on undirected graphs with k players is at most k3(k+1)/2-k21+k3(k+1)/2-k2hk=(1-?(1/k4))hk, where hk denotes the k-th harmonic number. This improves on the known upper bound of hk, which is also valid for directed graphs but for these, in contrast, is tight. Hence, we give the first non-trivial upper bound on the price of stability for undirected shapley network design games that is valid for an arbitrary number of players. Our bound is proved by analyzing the price of stability restricted to nash equilibria that minimize the potential function of the game. We also present a game with k=3 players in which such a restricted price of stability is 1.634. This shows that the analysis of bilò and bove (2011) [3] is tight. In addition, we give an example for three players that improves the lower bound on the (unrestricted) price of stability to 1.571.
AB - In this article we show that the price of stability of shapley network design games on undirected graphs with k players is at most k3(k+1)/2-k21+k3(k+1)/2-k2hk=(1-?(1/k4))hk, where hk denotes the k-th harmonic number. This improves on the known upper bound of hk, which is also valid for directed graphs but for these, in contrast, is tight. Hence, we give the first non-trivial upper bound on the price of stability for undirected shapley network design games that is valid for an arbitrary number of players. Our bound is proved by analyzing the price of stability restricted to nash equilibria that minimize the potential function of the game. We also present a game with k=3 players in which such a restricted price of stability is 1.634. This shows that the analysis of bilò and bove (2011) [3] is tight. In addition, we give an example for three players that improves the lower bound on the (unrestricted) price of stability to 1.571.
U2 - 10.1016/j.tcs.2014.10.037
DO - 10.1016/j.tcs.2014.10.037
M3 - Article
SN - 0304-3975
VL - 562
SP - 557
EP - 564
JO - Theoretical Computer Science
JF - Theoretical Computer Science
ER -