Improved biocompatibility of profiled sutures through lower macrophages adhesion

Roman M. Eickhoff*, Tim Bolle, Klas Kossel, Daniel Heise, Andreas Kroh, Andreas Lambertz, Andreas Blaeser, Thomas Gries, Stefan Jockenhoevel, Ulf P. Neumann, Christian D. Klink

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

8 Citations (Web of Science)

Abstract

The biocompatibility of a textile implant is determined by various parameters, such as material composition and surface chemistry. However, little is known about the influence of geometry of sutures on biocompatibility. To elucidate this factor we focused on geometry-modification resulting in ultrafine polyethylene terephthalate (UFPET) suture and a snowflake like shaped polyvenylidenfluorid (PVDF) suture. Forty-eight rats were divided into two observation periods. In each rat 3 out of 4 sutures (profiled UFPET, snowflake-like profiled PVDF, reference Prolene and Mersilene suture) were randomly placed into the subcutaneous tissue. Rats were euthanized after 7 and 21 days and samples were explanted. Foreign body granuloma was measured and expression of CD68, TUNEL, Ki-67 and Collagen I/III ratio were determined. The profiled (snowflake) suture showed a significantly smaller FBG in comparison to standard sutures (p <0.001). Both modified sutures showed a significant lower tissue remodeling by Ki-67 and TUNEL expression (p <0.03). Furthermore, profiled sutures caused a lower inflammatory reaction expressed in a significant lower amount of CD68 positive macrophages after 21 days (p <0.001). Modifications of suture geometry alter the foreign body granuloma and the inflammatory reaction. Therefore, profiled sutures might be a promising approach to improve biocompatibility of textile mesh prosthesis. (C) 2018 Wiley Periodicals, Inc.

Original languageEnglish
Pages (from-to)1772-1778
Number of pages7
JournalJournal of Biomedical Materials Research Part B-applied Biomaterials
Volume107
Issue number6
DOIs
Publication statusPublished - Aug 2019

Keywords

  • textile implant
  • geometry-optimized suture
  • PVDF suture
  • UFPET suture
  • MESH
  • ACTIVATION

Cite this