KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia

Maartje Pennings, Meyke Schouten, Judith van Gaalen, Rowdy P. P. Meijer, Susanne T. de Bot, Marjolein Kriek, Christiaan G. J. Saris, Leonard H. van den Berg, Michael A. van Es, Dick M. H. Zuidgeest, Mariet W. Elting, Jiddeke M. van de Kamp, Karin Y. Van Spaendonck-Zwarts, Christine de Die-Smulders, Eva H. Brilstra, Corien C. Verschuuren, Bert B. A. de Vries, Jacques Bruijn, Kalliopi Sofou, Floor A. DuijkersB. Jaeger, Jolanda H. Schieving, Bart P. van de Warrenburg, Erik-Jan Kamsteeg*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Web of Science)

Abstract

Variants in the KIF1A gene can cause autosomal recessive spastic paraplegia 30, autosomal recessive hereditary sensory neuropathy, or autosomal (de novo) dominant mental retardation type 9. More recently, variants in KIF1A have also been described in a few cases with autosomal dominant spastic paraplegia. Here, we describe 20 KIF1A variants in 24 patients from a clinical exome sequencing cohort of 347 individuals with a mostly 'pure' spastic paraplegia. In these patients, spastic paraplegia was slowly progressive and mostly pure, but with a highly variable disease onset (0-57 years). Segregation analyses showed a de novo occurrence in seven cases, and a dominant inheritance pattern in 11 families. The motor domain of KIF1A is a hotspot for disease causing variants in autosomal dominant spastic paraplegia, similar to mental retardation type 9 and recessive spastic paraplegia type 30. However, unlike these allelic disorders, dominant spastic paraplegia was also caused by loss-of-function variants outside this domain in six families. Finally, three missense variants were outside the motor domain and need further characterization. In conclusion, KIF1A variants are a frequent cause of autosomal dominant spastic paraplegia in our cohort (6-7%). The identification of KIF1A loss-of-function variants suggests haploinsufficiency as a possible mechanism in autosomal dominant spastic paraplegia.

Original languageEnglish
Pages (from-to)40-49
Number of pages10
JournalEuropean Journal of Human Genetics
Volume28
Issue number1
DOIs
Publication statusPublished - Jan 2020

Keywords

  • MOTOR DOMAIN
  • MONOMERIC MOTOR
  • MUTATIONS
  • DIMERIZATION
  • MECHANISMS
  • NEUROPATHY
  • TRANSPORT

Cite this