@article{46c294d826d447ddaf3d60c9388af344,
title = "Identification of Mixed Causal-Noncausal Models in Finite Samples",
abstract = "Gouri{\'e}roux and Zako{\"i}an (2013) propose to use noncausal models to parsimoniously capture nonlinear features often observed in financial time series and in particular bubble phenomena. In order to distinguish causal autoregressive processes from purely noncausal or mixed causal-noncausal ones, one has to depart from the Gaussianity assumption on the error distribution. Financial (and to a large extent macroeconomic) data are characterized by large and sudden changes that cannot be capturedby the Normal distribution, which explains why leptokurtic error distributions are often considered in empirical finance. By means of Monte Carlo simulations, this paper investigates the identication of mixed causal-noncausal models in finite samples for different values of the excess kurtosis of the error process. We compare the performance of the MLE, assuming a t-distribution, with that of theLAD estimator that we propose in this paper. Similar to Davis, Knight and Liu (1992) we find that for infinite variance autoregressive processes both the MLE and LAD estimator converge faster. We further specify the general asymptotic normality results obtained in Andrews, Breidt and Davis (2006)for the case of t-distributed and Laplacian distributed error terms. We first illustrate our analysis by estimating mixed causal-noncausal autoregressions to model the demand for solar panels in Belgium over the last decade. Then we look at the presence of potential noncausal components in daily realizedvolatility measures for 21 equity indexes. The presence of a noncausal component is confirmed in both empirical illustrations.",
keywords = "Noncausal models, Non-Gaussian distributions, Realized volatilities, bubbles",
author = "Alain Hecq and Lenard Lieb and Sean Telg",
note = "Data source: the Commisson Wallone pour l'Energie (CWaPE) and Oxford-Man Institute of Quantitative Finance, Library version 0.2",
year = "2016",
doi = "10.15609/annaeconstat2009.123-124.0307",
language = "English",
volume = "123/124",
pages = "307--331",
journal = "Annals of Economics and Statistics",
issn = "2115-4430",
publisher = "Groupe des ecoles nationales d'economie et statistique",
}