Hydrogenation of Cyclic 1,3-Diones to Their 1,3-Diols Using Heterogeneous Catalysts: Toward a Facile, Robust, Scalable, and Potentially Bio-Based Route

Christian A. M. R. van Slagmaat, Gerard K. M. Verzijl, Peter J. L. M. Quaedflieg, Paul L. Alsters, Stefaan M. A. De Wildeman*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cyclopentane-1,3-diol (4b) has gained renewed attention as a potential building block for polymers and fuels because its synthesis from hemicellulose-derived 4-hydroxycyclopent-2-enone (3) was recently disclosed. However, cyclopentane-1,3-dione (4), which is a constitutional isomer of 3, possesses a higher chemical stability and can therefore afford higher carbon mass balances and higher yields of 4b in the hydrogenation reaction under more concentrated conditions. In this work, the hydrogenation of 4 into 4b over a commercial Ru/C catalyst was systematically investigated on a bench scale through kinetic studies and variation of reaction conditions. Herein, the temperature, H-2-pressure, and the solvent choice were found to have significant effects on the reaction rate and suppression of undesired dehydration of 4. The cis-trans ratio of 4b is naturally generated as 7:3 in these reactions. However, at elevated reaction temperatures, 4b epimerizes, yielding more trans products. This effect was also studied and rationalized from a thermodynamic perspective using DFT. The combined optimized reaction conditions provided 78% yield for 4b, and successful applications to 8-fold scaled up reactions (40 g) and a substrate scope of several 1,3-diones demonstrate the general applicability of this catalytic approach.

Original languageEnglish
Pages (from-to)4313-4328
Number of pages16
JournalAcs omega
Volume6
Issue number6
DOIs
Publication statusPublished - 16 Feb 2021

Cite this