TY - JOUR
T1 - Human V4 size predicts crowding distance
AU - Kurzawski, Jan W.
AU - Qiu, Brenda S.
AU - Majaj, Najib J.
AU - Benson, Noah
AU - Pelli, Denis G.
AU - Winawer, Jonathan
PY - 2025/2/28
Y1 - 2025/2/28
N2 - Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called "crowding", is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we made paired measurements of brain and behavior in 50 observers. We used psychophysics to measure crowding distance and calculate , the number of letters that fit into each observer's visual field without crowding. In the same observers, we used fMRI to measure the surface area (mm ) of retinotopic maps V1, V2, V3, and V4. Across observers, is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of to area of V4 indicates conservation of across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.
AB - Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called "crowding", is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we made paired measurements of brain and behavior in 50 observers. We used psychophysics to measure crowding distance and calculate , the number of letters that fit into each observer's visual field without crowding. In the same observers, we used fMRI to measure the surface area (mm ) of retinotopic maps V1, V2, V3, and V4. Across observers, is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of to area of V4 indicates conservation of across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.
U2 - 10.1101/2024.04.03.587977
DO - 10.1101/2024.04.03.587977
M3 - Article
JO - bioRxiv
JF - bioRxiv
ER -