Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: a crucial role for nuclear p47(phox)

J.A. Sipkens, P.A. Krijnen*, N. E. Hahn, M. Wassink, C. Meischl, D.E. Smith, R.J. Musters, C.D.A. Stehouwer, J.A. Rauwerda, V.W.M. van Hinsbergh, H.W. Niessen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We previously found that homocysteine (Hcy) induced plasma membrane flip-flop, apoptosis, and necrosis in cardiomyocytes. Inactivation of flippase by Hcy induced membrane flip-flop, while apoptosis was induced via a NOX2-dependent mechanism. It has been suggested that S-adenosylhomocysteine (SAH) is the main causative factor in hyperhomocysteinemia (HHC)-induced pathogenesis of cardiovascular disease. Therefore, we evaluated whether the observed cytotoxic effect of Hcy in cardiomyocytes is SAH dependent. Rat cardiomyoblasts (H9c2 cells) were treated under different conditions: (1) non-treated control (1.5 nM intracellular SAH with 2.8 muM extracellular L: -Hcy), (2) incubation with 50 muM adenosine-2,3-dialdehyde (ADA resulting in 83.5 nM intracellular SAH, and 1.6 muM extracellular L: -Hcy), (3) incubation with 2.5 mM D: ,L: -Hcy (resulting in 68 nM intracellular SAH and 1513 muM extracellular L: -Hcy) with or without 10 muM reactive oxygen species (ROS)-inhibitor apocynin, and (4) incubation with 100 nM, 10 muM, and 100 muM SAH. We then determined the effect on annexin V/propodium iodide positivity, flippase activity, caspase-3 activity, intracellular NOX2 and p47(phox) expression and localization, and nuclear ROS production. In contrast to Hcy, ADA did not induce apoptosis, necrosis, or membrane flip-flop. Remarkably, both ADA and Hcy induced a significant increase in nuclear NOX2 expression. However, in contrast to ADA, Hcy additionally induced nuclear p47(phox) expression, increased nuclear ROS production, and inactivated flippase. Incubation with SAH did not have an effect on cell viability, nor on flippase activity, nor on nuclear NOX2-, p47phox expression or nuclear ROS production. HHC-induced membrane flip-flop and apoptosis in cardiomyocytes is due to increased Hcy levels and not primarily related to increased intracellular SAH, which plays a crucial role in nuclear p47(phox) translocation and subsequent ROS production.
Original languageEnglish
Pages (from-to)229-239
Number of pages11
JournalMolecular and Cellular Biochemistry
Volume358
Issue number1-2
DOIs
Publication statusPublished - Dec 2011

Keywords

  • Homocysteine
  • S-adenosylhomocysteine
  • Cardiomyocyte apoptosis
  • Membrane flip-flop
  • SMOOTH-MUSCLE-CELLS
  • NADPH OXIDASE
  • MYOCARDIAL-INFARCTION
  • DNA HYPOMETHYLATION
  • HUMAN-NEUTROPHILS
  • NAD(P)H OXIDASE
  • NOX2 EXPRESSION
  • HEART-FAILURE
  • HYPERHOMOCYSTEINEMIA
  • ACTIVATION

Cite this