TY - JOUR
T1 - GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer
AU - Hellebrekers, D.M.
AU - Lentjes, M.H.
AU - van den Bosch, S.M.
AU - Melotte, V.
AU - Wouters, K.A.
AU - Daenen, K.L.
AU - Smits, K.M.
AU - Akiyama, Y.
AU - Yuasa, Y.
AU - Sanduleanu, S.
AU - Khalid - de Bakker, C.A.
AU - Jonkers, D.
AU - Weijenberg, M.P.
AU - Louwagie, J.
AU - van Criekinge, W.
AU - Carvalho, B.
AU - Meijer, G.A.
AU - Baylin, S.B.
AU - Herman, J.G.
AU - de Bruine, A.P.
AU - van Engeland, M.
PY - 2009/1/1
Y1 - 2009/1/1
N2 - PURPOSE: The transcription factors GATA4 and GATA5 are involved in gastrointestinal development and are inactivated by promoter hypermethylation in colorectal cancer. Here, we evaluated GATA4/5 promoter methylation as potential biomarkers for noninvasive colorectal cancer detection, and investigated the role of GATA4/5 in colorectal cancer. EXPERIMENTAL DESIGN: Promoter methylation of GATA4/5 was analyzed in colorectal tissue and fecal DNA from colorectal cancer patients and healthy controls using methylation-specific PCR. The potential function of GATA4/5 as tumor suppressors was studied by inducing GATA4/5 overexpression in human colorectal cancer cell lines. RESULTS: GATA4/5 methylation was observed in 70% (63/90) and 79% (61/77) of colorectal carcinomas, respectively, and was independent of clinicopathologic features. Methylation frequencies in normal colon tissues from noncancerous controls were 6% (5 of 88, GATA4; P < 0.001) and 13% (13 of 100, GATA5; P < 0.001). GATA4/5 overexpression suppressed colony formation (P < 0.005), proliferation (P < 0.001), migration (P < 0.05), invasion (P < 0.05), and anchorage-independent growth (P < 0.0001) of colorectal cancer cells. Examination of GATA4 methylation in fecal DNA from two independent series of colorectal cancer patients and controls yielded a sensitivity of 71% [95% confidence interval (95% CI), 55-88%] and specificity of 84% (95% CI, 74-95%) for colorectal cancer detection in the training set, and a sensitivity of 51% (95% CI, 37-65%) and specificity of 93% (95% CI, 84-100%) in the validation set. CONCLUSIONS: Methylation of GATA4/5 is a common and specific event in colorectal carcinomas, and GATA4/5 exhibit tumor suppressive effects in colorectal cancer cells in vitro. GATA4 methylation in fecal DNA may be of interest for colorectal cancer detection.
AB - PURPOSE: The transcription factors GATA4 and GATA5 are involved in gastrointestinal development and are inactivated by promoter hypermethylation in colorectal cancer. Here, we evaluated GATA4/5 promoter methylation as potential biomarkers for noninvasive colorectal cancer detection, and investigated the role of GATA4/5 in colorectal cancer. EXPERIMENTAL DESIGN: Promoter methylation of GATA4/5 was analyzed in colorectal tissue and fecal DNA from colorectal cancer patients and healthy controls using methylation-specific PCR. The potential function of GATA4/5 as tumor suppressors was studied by inducing GATA4/5 overexpression in human colorectal cancer cell lines. RESULTS: GATA4/5 methylation was observed in 70% (63/90) and 79% (61/77) of colorectal carcinomas, respectively, and was independent of clinicopathologic features. Methylation frequencies in normal colon tissues from noncancerous controls were 6% (5 of 88, GATA4; P < 0.001) and 13% (13 of 100, GATA5; P < 0.001). GATA4/5 overexpression suppressed colony formation (P < 0.005), proliferation (P < 0.001), migration (P < 0.05), invasion (P < 0.05), and anchorage-independent growth (P < 0.0001) of colorectal cancer cells. Examination of GATA4 methylation in fecal DNA from two independent series of colorectal cancer patients and controls yielded a sensitivity of 71% [95% confidence interval (95% CI), 55-88%] and specificity of 84% (95% CI, 74-95%) for colorectal cancer detection in the training set, and a sensitivity of 51% (95% CI, 37-65%) and specificity of 93% (95% CI, 84-100%) in the validation set. CONCLUSIONS: Methylation of GATA4/5 is a common and specific event in colorectal carcinomas, and GATA4/5 exhibit tumor suppressive effects in colorectal cancer cells in vitro. GATA4 methylation in fecal DNA may be of interest for colorectal cancer detection.
U2 - 10.1158/1078-0432.CCR-09-0055
DO - 10.1158/1078-0432.CCR-09-0055
M3 - Article
C2 - 19509152
SN - 1078-0432
VL - 15
SP - 3990
EP - 3997
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 12
ER -