TY - JOUR
T1 - Fitter Mitochondria Are Associated With Radioresistance in Human Head and Neck SQD9 Cancer Cells
AU - Grasso, Debora
AU - Medeiros, Hyllana C. D.
AU - Zampieri, Luca X.
AU - Bol, Vanesa
AU - Danhier, Pierre
AU - van Gisbergen, Marike W.
AU - Bouzin, Caroline
AU - Brusa, Davide
AU - Gregoire, Vincent
AU - Smeets, Hubert
AU - Stassen, Alphons P. M.
AU - Dubois, Ludwig J.
AU - Lambin, Philippe
AU - Dutreix, Marie
AU - Sonveaux, Pierre
N1 - Funding Information:
This work was supported by European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreements No. 642623 RADIATE and No. 722605 TRANSMIT, the French Community of Belgium (ARC 14/19-058), the Belgian Fondation contre le Cancer and the Belgian Télévie. PS is a Senior Research Associate of the Belgian Fonds National de la Recherche Scientifique (F.R.S.-FNRS). DG is a Ph.D. Fellow of Marie Skłodowska-Curie Grant No. 642623 RADIATE and a Ph.D. Fellow of the Télévie. LZ is a Ph.D. Fellow of Marie Skłodowska-Curie Grant No. 722605 TRANSMIT.
Publisher Copyright:
© Copyright © 2020 Grasso, Medeiros, Zampieri, Bol, Danhier, van Gisbergen, Bouzin, Brusa, Grégoire, Smeets, Stassen, Dubois, Lambin, Dutreix and Sonveaux.
PY - 2020/3/13
Y1 - 2020/3/13
N2 - The clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production. The cell cycle, clonogenicity, tumor growth in mice and DNA damage-repair were assessed. Mitochondrial DNA (mtDNA) was sequenced. In a bottom-up approach, matched glycolytic and oxidative SQD9 cells were generated using FACS-sorting, and tested for their radiosensitivity/radioresistance. We found that acquired radioresistance is associated with a shift from a glycolytic to a more oxidative metabolism in SQD9 cells. The opposite was also true, as the most oxidative fraction isolated from SQD9 wild-type cells was also more radioresistant than the most glycolytic fraction. However, neither reduced hexokinase expression nor OXPHOS were directly responsible for the radioresistant phenotype. Radiosensitive and radioresistant cells had similar proliferation rates and were equally efficient for ATP production. They were equally sensitive to redox stress and had similar DNA damage repair, but radioresistant cells had an increased number of mitochondria and a higher mtDNA content. Thus, an oxidative switch is associated with but is not responsible for acquired radioresistance in human SQD9 cells. In radioresistant cells, more abundant and fitter mitochondria could help to preserve mitochondrial functions upon irradiation.
AB - The clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production. The cell cycle, clonogenicity, tumor growth in mice and DNA damage-repair were assessed. Mitochondrial DNA (mtDNA) was sequenced. In a bottom-up approach, matched glycolytic and oxidative SQD9 cells were generated using FACS-sorting, and tested for their radiosensitivity/radioresistance. We found that acquired radioresistance is associated with a shift from a glycolytic to a more oxidative metabolism in SQD9 cells. The opposite was also true, as the most oxidative fraction isolated from SQD9 wild-type cells was also more radioresistant than the most glycolytic fraction. However, neither reduced hexokinase expression nor OXPHOS were directly responsible for the radioresistant phenotype. Radiosensitive and radioresistant cells had similar proliferation rates and were equally efficient for ATP production. They were equally sensitive to redox stress and had similar DNA damage repair, but radioresistant cells had an increased number of mitochondria and a higher mtDNA content. Thus, an oxidative switch is associated with but is not responsible for acquired radioresistance in human SQD9 cells. In radioresistant cells, more abundant and fitter mitochondria could help to preserve mitochondrial functions upon irradiation.
KW - Head and neck cancer
KW - radiotherapy
KW - radioresistance mechanisms
KW - cancer metabolism
KW - mitochondria
KW - oxidative phosphorylation (OXPHOS)
KW - RADIATION-RESISTANCE
KW - DNA-REPAIR
KW - METABOLISM
KW - RADIOSENSITIVITY
KW - SUPEROXIDE
KW - THERAPY
KW - RADIOTHERAPY
KW - MODULATORS
KW - COMPLEX
U2 - 10.3389/fphar.2020.00263
DO - 10.3389/fphar.2020.00263
M3 - Article
C2 - 32231567
SN - 1663-9812
VL - 11
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
M1 - 263
ER -