Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer

Vinicius Cavalheri*, Chris Burtin, Vittoria R. Formico, Mika L. Nonoyama, Sue Jenkins, Martijn A. Spruit, Kylie Hill

*Corresponding author for this work

Research output: Contribution to journal(Systematic) Review article peer-review

46 Citations (Web of Science)

Abstract

Background

Decreased exercise capacity and health-related quality of life (HRQoL) are common in people following lung resection for non-small cell lung cancer (NSCLC). Exercise training has been demonstrated to confer gains in exercise capacity and HRQoL for people with a range of chronic conditions, including chronic obstructive pulmonary disease and heart failure, as well as in people with prostate and breast cancer. A programme of exercise training may also confer gains in these outcomes for people following lung resection for NSCLC. This systematic review updates our 2013 systematic review.

Objectives

The primary aimof this review was to determine the effects of exercise training on exercise capacity and adverse events in people following lung resection (with or without chemotherapy) for NSCLC. The secondary aims were to determine the effects of exercise training on other outcomes such as HRQoL, force-generating capacity of peripheral muscles, pressure-generating capacity of the respiratory muscles, dyspnoea and fatigue, feelings of anxiety and depression, lung function, and mortality.

Search methods

We searched for additional randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 2 of 12), MEDLINE (via PubMed) (2013 to February 2019), Embase (via Ovid) (2013 to February 2019), SciELO (The Scientific Electronic Library Online) (2013 to February 2019), and PEDro (Physiotherapy Evidence Database) (2013 to February 2019).

Selection criteria

We included RCTs in which participants with NSCLC who underwent lung resection were allocated to receive either exercise training, which included aerobic exercise, resistance exercise, or a combination of both, or no exercise training.

Data collection and analysis

Two review authors screened the studies and identified those eligible for inclusion. We used either postintervention values (with their respective standard deviation (SD)) or mean changes (with their respective SD) in the meta-analyses that reported results as mean difference (MD). In meta-analyses that reported results as standardised mean difference (SMD), we placed studies that reported postintervention values and those that reported mean changes in separate subgroups. We assessed the certainty of evidence for each outcome by downgrading or upgrading the evidence according to GRADE criteria.

Main results

Along with the three RCTs included in the original version of this review (2013), we identified an additional five RCTs in this update, resulting in a total of eight RCTs involving 450 participants (180 (40%) females). The risk of selection bias in the included studies was low and the risk of performance bias high. Six studies explored the effects of combined aerobic and resistance training; one explored the effects of combined aerobic and inspiratory muscle training; and one explored the effects of combined aerobic, resistance, inspiratory muscle training and balance training. On completion of the intervention period, compared to the control group, exercise capacity expressed as the peak rate of oxygen uptake (VO(2)peak) and six-minute walk distance (6MWD) was greater in the intervention group (VO(2)peak: MD 2.97 mL/kg/min, 95% confidence interval (CI) 1.93 to 4.02 mL/kg/min, 4 studies, 135 participants, moderatecertainty evidence; 6MWD: MD 57 m, 95% CI 34 to 80 m, 5 studies, 182 participants, high-certainty evidence). One adverse event (hip fracture) related to the intervention was reported in one of the included studies. The intervention group also achieved greater improvements in the physical component of general HRQoL (MD 5.0 points, 95% CI 2.3 to 7.7 points, 4 studies, 208 participants, low-certainty evidence); improved force-generating capacity of the quadriceps muscle (SMD 0.75, 95% CI 0.4 to 1.1, 4 studies, 133 participants, moderate-certainty evidence); and less dyspnoea (SMD -0.43, 95% CI -0.81 to -0.05, 3 studies, 110 participants, very low-certainty evidence). We observed uncertain effects on the mental component of general HRQoL, disease-specific HRQoL, handgrip force, fatigue, and lung function. There were insufficient data to comment on the effect of exercise training on maximal inspiratory and expiratory pressures and feelings of anxiety and depression. Mortality was not reported in the included studies.

Authors' conclusions

Exercise training increased exercise capacity and quadriceps muscle force of people following lung resection for NSCLC. Our findings also suggest improvements on the physical component score of general HRQoL and decreased dyspnoea. This systematic review emphasises the importance of exercise training as part of the postoperative management of people with NSCLC.

Original languageEnglish
Article numberCD009955
Number of pages62
JournalCochrane Database of Systematic Reviews
Volume6
Issue number6
DOIs
Publication statusPublished - 2019

Keywords

  • *Exercise Therapy
  • Carcinoma, Non-Small-Cell Lung [*rehabilitation; surgery]
  • Exercise Tolerance [*physiology]
  • Forced Expiratory Volume [physiology]
  • Health Status
  • Lung Neoplasms [*rehabilitation; surgery]
  • Muscle Strength [physiology]
  • Postoperative Care [methods]
  • Quadriceps Muscle [physiology]
  • Quality of Life
  • Randomized Controlled Trials as Topic
  • Humans
  • QUALITY-OF-LIFE
  • RANDOMIZED CONTROLLED-TRIAL
  • CURATIVE INTENT TREATMENT
  • ED AMERICAN-COLLEGE
  • LONG-TERM SURVIVORS
  • PHYSICAL-ACTIVITY
  • PULMONARY REHABILITATION
  • THORACIC-SURGERY
  • MANAGEMENT
  • INTERVENTION

Cite this