TY - JOUR
T1 - Event-related EEG oscillatory responses elicited by dynamic facial expression
AU - Aktürk, Tuba
AU - de Graaf, Tom A.
AU - Abra, Yasemin
AU - Sahoglu-Goktas, Sevilay
AU - Ozkan, Dilek
AU - Kula, Aysun
AU - Guntekin, Bahar
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/4/27
Y1 - 2021/4/27
N2 - Background Recognition of facial expressions (FEs) plays a crucial role in social interactions. Most studies on FE recognition use static (image) stimuli, even though real-life FEs are dynamic. FE processing is complex and multifaceted, and its neural correlates remain unclear. Transitioning from static to dynamic FE stimuli might help disentangle the neural oscillatory mechanisms underlying face processing and recognition of emotion expression. To our knowledge, we here present the first time-frequency exploration of oscillatory brain mechanisms underlying the processing of dynamic FEs. Results Videos of joyful, fearful, and neutral dynamic facial expressions were presented to 18 included healthy young adults. We analyzed event-related activity in electroencephalography (EEG) data, focusing on the delta, theta, and alpha-band oscillations. Since the videos involved a transition from neutral to emotional expressions (onset around 500 ms), we identified time windows that might correspond to face perception initially (time window 1; first TW), and emotion expression recognition subsequently (around 1000 ms; second TW). First TW showed increased power and phase-locking values for all frequency bands. In the first TW, power and phase-locking values were higher in the delta and theta bands for emotional FEs as compared to neutral FEs, thus potentially serving as a marker for emotion recognition in dynamic face processing. Conclusions Our time-frequency exploration revealed consistent oscillatory responses to complex, dynamic, ecologically meaningful FE stimuli. We conclude that while dynamic FE processing involves complex network dynamics, dynamic FEs were successfully used to reveal temporally separate oscillation responses related to face processing and subsequently emotion expression recognition.
AB - Background Recognition of facial expressions (FEs) plays a crucial role in social interactions. Most studies on FE recognition use static (image) stimuli, even though real-life FEs are dynamic. FE processing is complex and multifaceted, and its neural correlates remain unclear. Transitioning from static to dynamic FE stimuli might help disentangle the neural oscillatory mechanisms underlying face processing and recognition of emotion expression. To our knowledge, we here present the first time-frequency exploration of oscillatory brain mechanisms underlying the processing of dynamic FEs. Results Videos of joyful, fearful, and neutral dynamic facial expressions were presented to 18 included healthy young adults. We analyzed event-related activity in electroencephalography (EEG) data, focusing on the delta, theta, and alpha-band oscillations. Since the videos involved a transition from neutral to emotional expressions (onset around 500 ms), we identified time windows that might correspond to face perception initially (time window 1; first TW), and emotion expression recognition subsequently (around 1000 ms; second TW). First TW showed increased power and phase-locking values for all frequency bands. In the first TW, power and phase-locking values were higher in the delta and theta bands for emotional FEs as compared to neutral FEs, thus potentially serving as a marker for emotion recognition in dynamic face processing. Conclusions Our time-frequency exploration revealed consistent oscillatory responses to complex, dynamic, ecologically meaningful FE stimuli. We conclude that while dynamic FE processing involves complex network dynamics, dynamic FEs were successfully used to reveal temporally separate oscillation responses related to face processing and subsequently emotion expression recognition.
KW - Event-related oscillations
KW - Dynamic facial expression
KW - Event-related power analysis
KW - Emotion
U2 - 10.1186/s12938-021-00882-8
DO - 10.1186/s12938-021-00882-8
M3 - Article
C2 - 33906649
SN - 1475-925X
VL - 20
JO - Biomedical Engineering Online
JF - Biomedical Engineering Online
IS - 1
M1 - 41
ER -