Abstract
Background Validation of voltage-based scar delineation has been limited to small populations using mainly endocardial measurements. The aim of this study is to compare unipolar voltage amplitudes (UnipV) with scar on delayed enhancement cardiac magnetic resonance imaging (DE-CMR).
Methods Heart failure patients who underwent DE-CMR and electro-anatomic mapping were included. Thirty-three endocardial mapped patients and 27 epicardial mapped patients were investigated. UnipV were computed peak-to-peak. Electrograms were matched with scar extent of the corresponding DE-CMR segment using a 16-segment/slice model. Non-scar was defined as 0% scar, while scar was defined as 1-100% scar extent.
Results UnipVs were moderately lower in scar than in non-scar (endocardial 7.1 [4.6-10.6] vs. 10.3 [7.4-14.2] mV; epicardial 6.7 [3.6-10.5] vs. 7.8 [4.2-12.3] mV; both p<0.001). The correlation between UnipV and scar extent was moderate for endocardial (R = -0.33, p<0.001), and poor for epicardial measurements (R = -0.07, p<0.001). Endocardial UnipV predicted segments with >25%, >50% and >75% scar extent with AUCs of 0.72, 0.73 and 0.76, respectively, while epicardial UnipV were poor scar predictors, independent of scar burden (AUC = 0.47-0.56). UnipV in non-scar varied widely between patients (p<0.001) and were lower scar compared to non-scar in only 9/22 (41%) endocardial mapped patients and 4/19 (21%) epicardial mapped patients with scar.
Conclusion UnipV are slightly lower in scar compared to non-scar. However, significant UnipV differences between and within patients and large overlap between non-scar and scar limits the reliability of accurate scar assessment, especially in epicardial measurements and in segments with less than 75% scar extent.
Original language | English |
---|---|
Article number | 0180637 |
Number of pages | 15 |
Journal | PLOS ONE |
Volume | 12 |
Issue number | 7 |
DOIs | |
Publication status | Published - 5 Jul 2017 |
Keywords
- SINUS RHYTHM
- NONISCHEMIC CARDIOMYOPATHY
- VENTRICULAR TACHYCARDIAS
- INTEGRATION
- ELECTROGRAMS
- INFARCTION
- SUBSTRATE
- ABLATION
- THERAPY
- MODEL