Evaluation of Cartilage Repair by Mesenchymal Stem Cells Seeded on a PEOT/PBT Scaffold in an Osteochondral Defect

V. Barron, K. Merghani, G. Shaw, C. M. Coleman, J. S. Hayes, S. Ansboro, A. Manian, G. O’Malley, E. Connolly, A. Nandakumar, C. A. van Blitterswijk, P. Habibovic, L. Moroni, F. Shannon, J. M. Murphy*, F. Barry

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

114 Downloads (Pure)

Abstract

The main objective of this study was to evaluate the effectiveness of a mesenchymal stem cell (MSC)-seeded polyethylene-oxide-terephthalate/polybutylene-terephthalate (PEOT/PBT) scaffold for cartilage tissue repair in an osteochondral defect using a rabbit model. Material characterisation using scanning electron microscopy indicated that the scaffold had a 3D architecture characteristic of the additive manufacturing fabrication method, with a strut diameter of 296 ± 52 μm and a pore size of 512 ± 22 μm × 476 ± 25 μm × 180 ± 30 μm. In vitro optimisation revealed that the scaffold did not generate an adverse cell response, optimal cell loading conditions were achieved using 50 μg/ml fibronectin and a cell seeding density of 25 × 10(6) cells/ml and glycosaminoglycan (GAG) accumulation after 28 days culture in the presence of TGFβ3 indicated positive chondrogenesis. Cell-seeded scaffolds were implanted in osteochondral defects for 12 weeks, with cell-free scaffolds and empty defects employed as controls. On examination of toluidine blue staining for chondrogenesis and GAG accumulation, both the empty defect and the cell-seeded scaffold appeared to promote repair. However, the empty defect and the cell-free scaffold stained positive for collagen type I or fibrocartilage, while the cell-seeded scaffold stained positive for collagen type II indicative of hyaline cartilage and was statistically better than the cell-free scaffold in the blinded histological evaluation. In summary, MSCs in combination with a 3D PEOT/PBT scaffold created a reparative environment for cartilage repair.
Original languageEnglish
Pages (from-to)2069-2082
Number of pages14
JournalAnnals of Biomedical Engineering
Volume43
DOIs
Publication statusPublished - 29 Sept 2015

Keywords

  • 3D scaffold
  • Additive manufacturing
  • Cartilage repair
  • Mesenchymal stem cells
  • PEOT/PBT

Cite this