Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule (S)-N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers

Margaux Frigoli*, Joseph W. Lowdon, Nicolas Donetti, Robert D. Crapnell, Craig E. Banks, Thomas J. Cleij, Hanne Dilien, Kasper Eersels, Bart van Grinsven

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC-MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at C-f = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 x 10(1)-1 x 10(3) nM and a limit of detection (LoD) of 31.78 +/- 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor's potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.
Original languageEnglish
Number of pages10
JournalAcs omega
DOIs
Publication statusPublished - 1 Aug 2024

Keywords

  • SCREEN-PRINTED ELECTRODES
  • GRAM-NEGATIVE BACTERIA

Fingerprint

Dive into the research topics of 'Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule (S)-N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers'. Together they form a unique fingerprint.

Cite this