TY - JOUR
T1 - Effects of protein kinase A and G inhibitors on hippocampal cholinergic markers expressions in rolipram- and sildenafil-induced spatial memory improvement
AU - Hosseini-Sharifabad, Ali
AU - Ghahremani, Mohammad Hossein
AU - Sabzevari, Omid
AU - Naghdi, Naser
AU - Abdollahi, Mohammad
AU - Beyer, Cordian
AU - Bollen, Eva
AU - Prickaerts, Jos
AU - Roghani, Ali
AU - Sharifzadeh, Mohammad
PY - 2012/5
Y1 - 2012/5
N2 - Although there are number of studies showing that phosphodiesterase (PDE) 4 and 5 inhibitors affect different kinds of memory, their effects on spatial memory consolidation in conjunction with the cholinergic activity in the hippocampus have not been studied before. In the present study firstly, rats were evaluated for the effects of different doses of the PDE4 inhibitor rolipram and the PDE5 inhibitor sildenafil on spatial memory consolidation in the water maze task. Rolipram or sildenafil was daily administered intraperitoneally 3 or Oh after the last trial of training, respectively. Then in a separate related experiment the effect of the most efficient doses of rolipram or sildenafil accompanied by an intrahippocampally injected protein kinase A (PKA) or protein kinase G (PKG) inhibitor, respectively, was examined. Finally for determination of the hippocampal cholinergic activity the protein expression of hippocampal vesicular acetylcholine transporter (VAChT) and cholineacetyltransferase (ChAT) was measured. Rolipram at 0.03 mg/kg as well as sildenafil at 3 mg/kg increased spatial memory and their enhancing effect was completely blocked following inhibition of PKA and PKG. respectively. Furthermore, none of the treatments had a significant effect on the hippocampal ChAT and VAChT levels. Our data showed that rolipram and sildenafil enhanced spatial memory consolidation in an inverted U-shaped dose-response curve. This effect is dependent on the activity of cAMP/PKA- and cGMP/PKG-mediated pathways, respectively in the hippocampus. However, we did not find evidence for a chronic increase of cholinergic activity in the observed PDE inhibitor-induced memory improvement.
AB - Although there are number of studies showing that phosphodiesterase (PDE) 4 and 5 inhibitors affect different kinds of memory, their effects on spatial memory consolidation in conjunction with the cholinergic activity in the hippocampus have not been studied before. In the present study firstly, rats were evaluated for the effects of different doses of the PDE4 inhibitor rolipram and the PDE5 inhibitor sildenafil on spatial memory consolidation in the water maze task. Rolipram or sildenafil was daily administered intraperitoneally 3 or Oh after the last trial of training, respectively. Then in a separate related experiment the effect of the most efficient doses of rolipram or sildenafil accompanied by an intrahippocampally injected protein kinase A (PKA) or protein kinase G (PKG) inhibitor, respectively, was examined. Finally for determination of the hippocampal cholinergic activity the protein expression of hippocampal vesicular acetylcholine transporter (VAChT) and cholineacetyltransferase (ChAT) was measured. Rolipram at 0.03 mg/kg as well as sildenafil at 3 mg/kg increased spatial memory and their enhancing effect was completely blocked following inhibition of PKA and PKG. respectively. Furthermore, none of the treatments had a significant effect on the hippocampal ChAT and VAChT levels. Our data showed that rolipram and sildenafil enhanced spatial memory consolidation in an inverted U-shaped dose-response curve. This effect is dependent on the activity of cAMP/PKA- and cGMP/PKG-mediated pathways, respectively in the hippocampus. However, we did not find evidence for a chronic increase of cholinergic activity in the observed PDE inhibitor-induced memory improvement.
KW - PKA
KW - PKG
KW - VAChT
KW - ChAT
KW - Rolipram
KW - Sildenafil
KW - Spatial consolidation
U2 - 10.1016/j.pbb.2012.01.017
DO - 10.1016/j.pbb.2012.01.017
M3 - Article
C2 - 22306745
SN - 0091-3057
VL - 101
SP - 311
EP - 319
JO - Pharmacology, Biochemistry and Behavior
JF - Pharmacology, Biochemistry and Behavior
IS - 3
ER -