Effects of ATP infusion on glucose turnover and gluconeogenesis in patients with advanced non-small-cell lung cancer

H.J. Agteresch, S. Leij-Halfwerk, J.W.O. van den Berg, C.H. Hordijk-Luijk, J.H.P. Wilson, P.C. Dagnelie

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cancer cachexia is associated with elevated lipolysis, proteolysis and gluconeogenesis. ATP infusion has been found to significantly inhibit loss of body weight, fat mass and fat-free mass in patients with advanced lung cancer. The present study was aimed at exploring the effects of ATP on whole-body glucose turnover, alanine turnover and gluconeogenesis from alanine. Twelve patients with advanced non-small-cell lung cancer (NSCLC) were studied I week before and during 22-24 h of continuous ATP infusion. After an overnight fast, turnover rates of glucose and alanine, and gluconeogenesis from alanine, were determined using primed constant infusions of [6,6-H-2(2)]glucose and [3-C-13]alanine. Thirteen NSCLC patients and eleven healthy subjects were studied as control groups without ATP infusion. During high-dose ATP infusion (75 mu g.min(-1).kg(-1)), glucose turnover was 0.62+/-0.07 mmol.h(-1).kg(-1), compared with 0.44+/-0.13 mmol.h(-1).kg(-1) at baseline (P = 0.04). For gluconeogenesis a similar, but non-significant, trend was observed [baseline, 0.30+/-0.16 mmol.h(-1).kg(-1); during ATP, 0.37+/-0.13 mmol.h(-1).kg(-1) (P = 0.08)]. At lower ATP doses (37-50 mu g.min(-1).kg(-1)) these effects were not detected. The relative increase in glucose turnover during ATP infusion compared with baseline showed a significant correlation with the ATP dose (r = 0.58, P = 0.02). No change in alanine turnover was observed at any ATP dose. The results of this study indicate an increase in glucose turnover during high-dose ATP infusion compared with baseline levels. During high-dose AIP infusion, glucose turnover was similar to that during low-dose ATP infusion and to that in control NSCLC patients. Between ATP infusions, however, glucose turnover in patients treated with high-dose ATP was significantly lower than that in the low-dose and control NSCLC patients (P = 0.04 and P = 0.03 respectively), and similar to that in healthy subjects. This would suggest that repeated high-dose ATP infusions may inhibit glucose turnover between infusion periods.
Original languageEnglish
Pages (from-to)689-695
Number of pages7
JournalClinical Science
Volume98
Issue number6
DOIs
Publication statusPublished - 1 Jan 2000

Cite this