Abstract
Department of Human Biology, Maastricht University, The Netherlands. [email protected]
Exposure to peroxides is known to increase the sensitivity of platelets towards activation by agonists. Similar platelet-activating effects are induced by sulfhydryl reagents that evoke Ca2+-induced Ca2+ release (CICR) by stimulating the Ca2+-releasing property of the inositol-1,4,5-trisphosphate receptor. We questioned whether these compounds may act by mobilising intracellular calcium in platelets by altering the intracellular glutathione redox state. Using FURA2-loaded, aspirin-treated platelets, Ca2+ signals were studied following exposure to the membrane-permeable sulfhydryl reagents, thimerosal and disulfiram, the glutathione peroxidase substrate, tert-butyl hydroperoxide, and the inhibitor of glutathione reductase, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). In single platelets monitored by fluorescence imaging techniques, thimerosal and disulfiram elicited repetitive spiking in [Ca2+]i after variable lag times, indicating that these compounds stimulated CICR. BCNU caused [Ca2+]i spiking of only low amplitude, whereas tert-butyl hydroperoxide was inactive. In platelets in suspension devoid of extracellular CaCl2, the sulfhydryl reagents, at concentrations which decreased glutathione by 25%, strongly increased the Ca2+ responses of agonists that stimulated phospholipase C (thrombin) or acted independently of phospholipase C stimulation (thapsigargin). However, Ca2+ release was only slightly promoted by concentrations of BCNU that resulted in substantial depletion of the glutathione level. Tert-butyl hydroperoxide was without effect on glutathione, but partially inhibited Ca2+ mobilisation with these agonists. It is concluded that, in platelets, the potent CICR-promoting effects of sulfhydryl reagents are not solely due to their reaction with intracellular glutathione, but that extensive reduction in glutathione content is associated with Ca2+ mobilisation and CICR.
Exposure to peroxides is known to increase the sensitivity of platelets towards activation by agonists. Similar platelet-activating effects are induced by sulfhydryl reagents that evoke Ca2+-induced Ca2+ release (CICR) by stimulating the Ca2+-releasing property of the inositol-1,4,5-trisphosphate receptor. We questioned whether these compounds may act by mobilising intracellular calcium in platelets by altering the intracellular glutathione redox state. Using FURA2-loaded, aspirin-treated platelets, Ca2+ signals were studied following exposure to the membrane-permeable sulfhydryl reagents, thimerosal and disulfiram, the glutathione peroxidase substrate, tert-butyl hydroperoxide, and the inhibitor of glutathione reductase, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). In single platelets monitored by fluorescence imaging techniques, thimerosal and disulfiram elicited repetitive spiking in [Ca2+]i after variable lag times, indicating that these compounds stimulated CICR. BCNU caused [Ca2+]i spiking of only low amplitude, whereas tert-butyl hydroperoxide was inactive. In platelets in suspension devoid of extracellular CaCl2, the sulfhydryl reagents, at concentrations which decreased glutathione by 25%, strongly increased the Ca2+ responses of agonists that stimulated phospholipase C (thrombin) or acted independently of phospholipase C stimulation (thapsigargin). However, Ca2+ release was only slightly promoted by concentrations of BCNU that resulted in substantial depletion of the glutathione level. Tert-butyl hydroperoxide was without effect on glutathione, but partially inhibited Ca2+ mobilisation with these agonists. It is concluded that, in platelets, the potent CICR-promoting effects of sulfhydryl reagents are not solely due to their reaction with intracellular glutathione, but that extensive reduction in glutathione content is associated with Ca2+ mobilisation and CICR.
Original language | English |
---|---|
Pages (from-to) | 1533-1542 |
Number of pages | 10 |
Journal | Biochemical Pharmacology |
Volume | 53 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Jan 1997 |