TY - JOUR
T1 - Early-life exposome and lung function in children in Europe
T2 - an analysis of data from the longitudinal, population-based HELIX cohort
AU - Agier, Lydiane
AU - Basagaña, Xavier
AU - Maitre, Lea
AU - Granum, Berit
AU - Bird, Philippa K
AU - Casas, Maribel
AU - Oftedal, Bente
AU - Wright, John
AU - Andrusaityte, Sandra
AU - de Castro, Montserrat
AU - Cequier, Enrique
AU - Chatzi, Leda
AU - Donaire-Gonzalez, David
AU - Grazuleviciene, Regina
AU - Haug, Line S
AU - Sakhi, Amrit K
AU - Leventakou, Vasiliki
AU - McEachan, Rosemary
AU - Nieuwenhuijsen, Mark
AU - Petraviciene, Inga
AU - Robinson, Oliver
AU - Roumeliotaki, Theano
AU - Sunyer, Jordi
AU - Tamayo-Uria, Ibon
AU - Thomsen, Cathrine
AU - Urquiza, Jose
AU - Valentin, Antonia
AU - Slama, Rémy
AU - Vrijheid, Martine
AU - Siroux, Valérie
N1 - Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.
PY - 2019/2
Y1 - 2019/2
N2 - BACKGROUND: Several single-exposure studies have documented possible effects of environmental factors on lung function, but none has relied on an exposome approach. We aimed to evaluate the association between a broad range of prenatal and postnatal lifestyle and environmental exposures and lung function in children.METHODS: In this analysis, we used data from 1033 mother-child pairs from the European Human Early-Life Exposome (HELIX) cohort (consisting of six existing longitudinal birth cohorts in France, Greece, Lithuania, Norway, Spain, and the UK of children born between 2003 and 2009) for whom a valid spirometry test was recorded for the child. 85 prenatal and 125 postnatal exposures relating to outdoor, indoor, chemical, and lifestyle factors were assessed, and lung function was measured by spirometry in children at age 6-12 years. Two agnostic linear regression methods, a deletion-substitution-addition (DSA) algorithm considering all exposures simultaneously, and an exposome-wide association study (ExWAS) considering exposures independently, were applied to test the association with forced expiratory volume in 1 s percent predicted values (FEV1%). We tested for two-way interaction between exposures and corrected for confounding by co-exposures.FINDINGS: In the 1033 children (median age 8·1 years, IQR 6·5-9·0), mean FEV1% was 98·8% (SD 13·2). In the ExWAS, prenatal perfluorononanoate (p=0·034) and perfluorooctanoate (p=0·030) exposures were associated with lower FEV1%, and inverse distance to nearest road during pregnancy (p=0·030) was associated with higher FEV1%. Nine postnatal exposures were associated with lower FEV1%: copper (p=0·041), ethyl-paraben (p=0·029), five phthalate metabolites (mono-2-ethyl 5-carboxypentyl phthalate [p=0·016], mono-2-ethyl-5-hydroxyhexyl phthalate [p=0·023], mono-2-ethyl-5-oxohexyl phthalate [p=0·0085], mono-4-methyl-7-oxooctyl phthalate [p=0·040], and the sum of di-ethylhexyl phthalate metabolites [p=0·014]), house crowding (p=0·015), and facility density around schools (p=0·027). However, no exposure passed the significance threshold when corrected for multiple testing in ExWAS, and none was selected with the DSA algorithm, including when testing for exposure interactions.INTERPRETATION: Our systematic exposome approach identified several environmental exposures, mainly chemicals, that might be associated with lung function. Reducing exposure to these ubiquitous chemicals could help to prevent the development of chronic respiratory disease.FUNDING: European Community's Seventh Framework Programme (HELIX project).
AB - BACKGROUND: Several single-exposure studies have documented possible effects of environmental factors on lung function, but none has relied on an exposome approach. We aimed to evaluate the association between a broad range of prenatal and postnatal lifestyle and environmental exposures and lung function in children.METHODS: In this analysis, we used data from 1033 mother-child pairs from the European Human Early-Life Exposome (HELIX) cohort (consisting of six existing longitudinal birth cohorts in France, Greece, Lithuania, Norway, Spain, and the UK of children born between 2003 and 2009) for whom a valid spirometry test was recorded for the child. 85 prenatal and 125 postnatal exposures relating to outdoor, indoor, chemical, and lifestyle factors were assessed, and lung function was measured by spirometry in children at age 6-12 years. Two agnostic linear regression methods, a deletion-substitution-addition (DSA) algorithm considering all exposures simultaneously, and an exposome-wide association study (ExWAS) considering exposures independently, were applied to test the association with forced expiratory volume in 1 s percent predicted values (FEV1%). We tested for two-way interaction between exposures and corrected for confounding by co-exposures.FINDINGS: In the 1033 children (median age 8·1 years, IQR 6·5-9·0), mean FEV1% was 98·8% (SD 13·2). In the ExWAS, prenatal perfluorononanoate (p=0·034) and perfluorooctanoate (p=0·030) exposures were associated with lower FEV1%, and inverse distance to nearest road during pregnancy (p=0·030) was associated with higher FEV1%. Nine postnatal exposures were associated with lower FEV1%: copper (p=0·041), ethyl-paraben (p=0·029), five phthalate metabolites (mono-2-ethyl 5-carboxypentyl phthalate [p=0·016], mono-2-ethyl-5-hydroxyhexyl phthalate [p=0·023], mono-2-ethyl-5-oxohexyl phthalate [p=0·0085], mono-4-methyl-7-oxooctyl phthalate [p=0·040], and the sum of di-ethylhexyl phthalate metabolites [p=0·014]), house crowding (p=0·015), and facility density around schools (p=0·027). However, no exposure passed the significance threshold when corrected for multiple testing in ExWAS, and none was selected with the DSA algorithm, including when testing for exposure interactions.INTERPRETATION: Our systematic exposome approach identified several environmental exposures, mainly chemicals, that might be associated with lung function. Reducing exposure to these ubiquitous chemicals could help to prevent the development of chronic respiratory disease.FUNDING: European Community's Seventh Framework Programme (HELIX project).
KW - RESPIRATORY-TRACT INFECTIONS
KW - PRENATAL EXPOSURE
KW - NEIGHBORHOOD WALKABILITY
KW - AIR-POLLUTION
KW - HEALTH
KW - ASTHMA
KW - AGE
KW - ASSOCIATION
KW - POLLUTANTS
KW - INFANCY
U2 - 10.1016/S2542-5196(19)30010-5
DO - 10.1016/S2542-5196(19)30010-5
M3 - Article
C2 - 30737192
SN - 2542-5196
VL - 3
SP - e81-e92
JO - The Lancet. Planetary health
JF - The Lancet. Planetary health
IS - 2
ER -