Dispersing Obnoxious Facilities on a Graph

Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, Gerhard J. Woeginger

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance delta from each other. We investigate the complexity of this problem in terms of the rational parameter delta. The problem is polynomially solvable, if the numerator of delta is 1 or 2, while all other cases turn out to be NP-hard.

Original languageEnglish
Number of pages16
JournalAlgorithmica
DOIs
Publication statusE-pub ahead of print - 26 Feb 2021

JEL classifications

  • c00 - Mathematical and Quantitative Methods: General
  • c02 - Mathematical Methods

Keywords

  • Algorithms
  • Facility location
  • Complexity
  • Optimization
  • Graph theory

Cite this